

I - 1

Analyzing Environmental Policies with IGEM, an Intertemporal

General Equilibrium Model of U.S. Growth and the Environment

Part 2

Appendix I. Model Solution Algorithm

Dale Jorgenson Associates
Cambridge, MA

April 2008

I - 2

Appendix I. Model Solution Algorithm

 IGEM is solved using a suite of nested solution algorithms. This appendix

provides an overview of the solution process and discusses some of the key details of the

implementation.

I.1 Structure of the Algorithm

Conceptually, the model consists of three main components: (1) an intratemporal

module; (2) a steady-state module; and (3) an intertemporal module. The intratemporal

module computes a complete equilibrium for any given year t conditional on that year’s

exogenous variables and the values of two intertemporal variables: k and full_con (the

capital stock and the value of full consumption). The steady-state module, in contrast,

iterates over values of k and full_con and calls the intratemporal module repeatedly until

it finds a (k,full_con) pair satisfying the model’s steady state conditions. Finally, the

intertemporal module that iterates over complete intertemporal trajectories of k and

full_con (invoking the intratemporal module for every period) until it finds a set that

satisfy the model’s accumulation and Euler conditions. In addition, the intertemporal

module ensures that the trajectories satisfy two boundary conditions: (1) the initial capital

stock matches the value of the capital stock in the model’s data set, and (2) the value of

full consumption in the final period of the simulation matches its steady state value.

In terms of practical implementation, the algorithm begins by using the enhanced

version of Newton’s Method described in section I.2 to compute the model’s steady state

capital stock and value of full consumption (k and full_con). The algorithm itself is

I - 3

implemented in subroutine newtonss and the Newton miss distances are computed by

ss_miss. At each iteration of the steady state module (that is, for each trial pair of k and

full_con), the algorithm invokes the intratemporal module (which will be described in

more detail below) to compute all other steady state variables conditional on the guess of

k and full_con. After the steady state has been obtained, the intertemporal algorithm

begins iterating over the trajectories of k and full_con using the hybrid intertemporal

algorithm described in section I.3. The algorithm is implemented in subroutine ftaylor

and subroutine path is called at each iteration to evaluate each trajectory. When the

intertemporal algorithm converges, the simulation program saves the final transition path

for full_con (which is formally the model’s costate variable), and then writes out a

complete set of results for all endogenous variables.

 During both the steady state calculation and intertemporal calculations, the

intratemporal module is invoked repeatedly. For computational efficiency, it consists of

a three-tiered suite of Newton’s Method algorithms (again, enhanced as described in I.2).

The outer tier is implemented in subroutine newtonfp and iterates over a vector of factor

prices and other variables. The corresponding miss distances are computed by subroutine

intra_miss. For each iteration of newtonfp, an inner algorithm is called to determine

industry output prices conditional on the guessed vector of factor prices. The inner

algorithm is implemented in newtonpo and the miss distances are calculated by po_miss.

Finally, for each guess of factor prices a second inner algorithm computes the aggregate

price of consumption. The algorithm is implemented in newtonpcc with the miss distance

calculated in pcc_miss. Using a nested structure allows the algorithm to find a solution

I - 4

far more quickly than it would if the complete set of intratemporal equations were solved

in a single tier.

I.2 Broyden's Modification to Newton's Method

Broyden (1965, 1973) has developed a procedure that can reduce the number of

function evaluations required to solve a system of equations using Newton's method.

This section describes how the method works.

 Newton's method is an iterative procedure used to find a vector x that satisfies an

equation f(x) = 0 where f is a vector-valued function. Roughly speaking, a guess of x is

refined repeatedly until the each element of f is approximately zero. The fundamental

relationship used to improve the guess of x can be derived from a first-order Taylor series

expansion of f about a trial solution vector x. Suppose that the value of x at iteration k is

kx , and that evaluating f at kx gives kf . If the Jacobian of f at kx is kJ , the Newton

adjustment ks and the new trial solution 1+kx are given by the equations below:

 kkk fJ=s 1−− (I.1)

 kkk s+x=x 1+ (I.2)

In practice, Newton's method is usually implemented as follows. Given a trial

solution kx , the value of kf is computed. If kf is not sufficiently close to zero (usually

determined by computing kk f'f), kJ is formed by perturbing each of the n elements of

kx in succession. kJ is then used to determine ks using equation (1), and the new trial

solution, 1+kx , is found from equation (2). For each iteration f must be evaluated 1+n

times—once to obtain kf and n times to produce kJ .

I - 5

Broyden's modification is a particular way of using 1+kf to form 1+kJ from kJ

without additional function evaluations. At each iteration the Jacobian will be less

accurate than under the conventional algorithm so more iterations are usually required for

convergence. Even so, the computational gain may still be substantial since the number

of function evaluations per iteration is reduced from 1+n to 1.

 The Jacobian updating procedure works as follows. Let k+kk ff=y −1 . Since

kk sy / is the directional derivative of f in the direction given by ks , ky can be used to

revise the Jacobian. It does not, however, determine a unique adjustment to kJ , so

Broyden imposes the additional conditions that the directional derivatives implied by kJ

in directions orthogonal to ks be preserved in 1+kJ . This produces the updating rule

given below:

 ()
kk

k
kkkk+k s's

'ssJy+J=J −1 (I.3)

 What is really needed for Newton's method, however, is 1−
kJ . Broyden has also

derived an updating formula which operates directly on the inverse, eliminating

numerical difficulties which would arise from constantly inverting J . This update is

given below:

 ()
kkk

kk
kkkk+k yJs

JsyJs+J=J 1

1
111

1 −

−
−−− −

'
' (I.4)

I - 6

 For the updating method to work, an initial value of J is required. In most cases,

this must be constructed by the usual method of perturbing x n times.F

1
F When a number

of similar problems are to be solved, however, the final Jacobian from the previous

problem is often a good approximation to the true Jacobian for the next problem. In this

case, using the old Jacobian as an initial guess eliminates the n function evaluations at the

beginning of the new problem. This results in a substantial increase in the speed of the

algorithm and is implemented in the model.

I.3 A Hybrid Intertemporal Algorithm

 This algorithm is a generalization of the method due to Fair and Taylor (1983),

and exploits the fact that most economic models contain an accumulation equation

relating state variables in adjacent periods. It is substantially faster than the ordinary

Fair-Taylor algorithm while providing equally accurate results. The method is termed

“hybrid” because it employs certain features of multiple shooting (see Lipton, et al.,

1982) obtain these improvements in performance. In a sense, multiple shooting and the

Fair-Taylor approach are at different ends of a single spectrum. Shooting uses relatively

few intermediate points, but employs a great deal of information about the problem's

dynamic features. Fair-Taylor, on the other hand, uses a large number of points and

almost no dynamic information. The method described here lies in between because it

uses many points, but also a certain amount of dynamic data.

 Given a vector valued function A that generates a set of actual values from a

vector of expectations E , the problem is to find a vector E which solves the equation:

1 In principle, any matrix could be used as an initial Jacobian. However, convergence will usually be

I - 7

 ()EA=E (I.5)

The Fair-Taylor algorithm proceeds by computing ()kEA for a trial solution kE . If kA

is not sufficiently close to kE , a new trial vector is determined as shown:

 () kk+k E+A=E γγ −11 (I.6)

where kA = ()kEA , and γ is a parameter used to ensure stability. An important feature of

this approach is that the revision of a particular element of E depends only on the

corresponding elements of kA and kE : no information about adjacent elements is used.

In many economic problems, however, iE and 1+iE are related by an accumulation

equation. Furthermore, steady state values of E are usually known. Together, these

features mean that extending the algorithm to employ information about adjacent periods

could lead to a substantial improvement in convergence speed.

 An alternative technique can be developed by replacing A with a first-order

Taylor series expansion as shown:

 () () ()k+kkk+k EEJ+EAEA −≈ 11 (I.7)

Taking 1+kE to be a solution, the left hand side can be replaced to give the following:

 ()k+kkk+k EEJ+A=E −11 (I.8)

Collecting unknown terms on the left yields the equation below:

 () kkk+kk EJA=EJI −− 1 (I.9)

For convenience define vector kΦ and rewrite the equation as shown below:

 kkkk EJA= −Φ (I.10)

slower if it isn't reasonably close to the truth.

I - 8

 () k+kk =EJI Φ− 1 (I.11)

Writing out a small problem in scalar form (where the subscript k on J has been

eliminated for clarity):

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

Φ
Φ
Φ

=
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−−−
−−−
−−−

+

+

+

3

2

1

3
1

2
1

1
1

333231

232221

131211

1
1

1

k

k

k

k

k

k

E
E
E

JJJ
JJJ
JJJ

 (I.12)

In practice the true array kJI − will not be available, and a numerical approximation will

have to be used. Often the problem can be set up so that the actuals in period i depend on

expectations no farther in the future than period i+1. In the example above, this means

that 13J will be zero. Further simplification can be achieved by setting the derivatives of

the actuals with respect to past expectations to zero. (Note that unlike the previous tactic

this is an approximation, since these terms will usually be small but nonzero.) One final

approximation is to assume that the remaining partials are the same across periods. This

produces the system below:

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

Φ
Φ
Φ

=
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−
−−

−−

+

+

+

3

2

1

3
1

2
1

1
1

11

1211

1211

100
10

01

k

k

k

k

k

k

E
E
E

J
JJ

JJ
 (I.13)

Finally, expanding the right hand side gives:

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
−

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

=
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−
−−

−−

+

+

+

3

2

1

11

1211

1211

3

2

1

3
1

2
1

1
1

11

1211

1211

00
0

0

100
10

01

k

k

k

k

k

k

E
E
E

J
JJ

JJ

A
A
A

E
E
E

J
JJ

JJ
 (I.14)

The Fair-Taylor method is equivalent to setting 11J and 12J to zero. The algorithm can

be improved if values of these partials are available, even if they must be found

numerically. If the steady state value of E is known, the equation for the last actual can

I - 9

be dropped and the final element of E set directly to the steady state. This helps

determine earlier values of E, since the periods are linked by the 12J terms in the I-J

matrix.

 For a model which has one foresight variable, the above system of equations can

be solved easily by backward substitution; it is not necessary to use Gaussian elimination

or matrix inversion. The new expectation for the last period of the problem above can be

found as shown:

 ()3
113

11

3
1 1

1
k+k EJA

J
=E −

−
 (I.15)

Earlier periods are found by repeated application of the equation:

 ()1
112

1
1211

11
1 1

1 +i
+k

+i
k

i
ki

i
+k EJ+EJEJA

J
=E −−

−
 (I.16)

For two or more variables, the method is slightly more complicated because it requires

the inverse of matrix (I - J11). A typical revised expectation is calculated as shown:

 () ()1
112

1
1211111

+i
+k

+i
k

i
ki

i
+k EJ+EJEJAJI=E −−− −1 (I.17)

Since 11J is assumed to be constant over periods, it is only necessary to compute

() 1−− 11JI once for each iteration of the algorithm.

