Appendix A.

Equations of the Model & Glossary

A.0 Notation:

Time	t εI_T	$I_T = \{1, 2, \dots, T, \dots\}$
Industry/P	Producer j ε I _{IND}	$I_{IND} = \{1, 2, \dots, 35\}$
IO Comm	odities i ε I _{COM}	$I_{COM} = \{1, 2, \dots, 35\}$
Industry I	nputs i ε I _{INP}	$I_{INP} = \{1, 2, \dots, 35, NCI, K, L\}$
NIPA PCI	E Commodities n εI_{PCE}	$I_{PCE} = \{1, 2, \dots, 38\}$
Purchaser	s of domestic output $j \in I_{BUY}$	ut $I_{BUY} = \{1, 2, \dots, 35, C, I, G, X\}$
Household	ds k ε I _{POP}	
Nodes of j	production function m εI_{PNODE} i εI_{PNODEm}	n $I_{PNODE} = \{EN, M, \dots, WP\}$ I_{PNODEm} in Table ?.?
Nodes of	consumption funct m εI_{CNODE} i εI_{CNODEm}	ion $I_{CNODE} = \{EN, FD, \dots, RS\}$ I_{CNODEm} in Table ?.?
Nodes of i	investment function m εI_{INV} i εI_{INVm}	n $I_{INV} = \{ fixed,, mining \}$ I_{INVm} in Table ?.?
Vector of	1's 1	
Transpose	of matrix A A'	
Diagonal	matrix of a vector <i>Diag(v)</i>	v

A.1 Household Sector

Household first stage decision; Euler equation.

Max
$$\sum_{t=1}^{\infty} \frac{N_t^{eq}}{(1+\rho)^t} \left(F_t/N_t^{eq}\right)^{1-\frac{1}{\sigma}}$$
 (A.1.1)

subject to

$$WF = PK_0K_0 + BG_0 + BF_0 + \sum_{t=1}^{\infty} \frac{\bar{w}_t LH_t + misc_t}{\prod_{s=1}^t 1 + r_s} \ge \sum_{t=1}^{\infty} \frac{PF_t F_t}{\prod_{s=1}^t 1 + r_s}$$
(A.1.2)

where

 $misc = GTRAN + (1 - tk)(GINT^{rec} + YROW^{rec}) - twW_{t-1} - TLUMP - CR - TAXN$

$$\left[\frac{F_t/N_t^{eq}}{F_{t-1}/N_{t-1}^{eq}}\right]^{\frac{1}{\sigma}} = \frac{1+r_t}{1+\rho} \frac{PF_{t-1}}{PF_t}$$
(A.1.3)

Household second stage decision, goods-leisure choice.

 $F_{t} = F(CC_{t}, LEIS_{t})$ Formulated with the price dual: (A.1.4) $VV(PCC, w^{LE}, MF) = \max F(CC, LEIS)$ s.t. $MF = PCC. CC + w^{LE}. LEIS$ $-\ln VV = \alpha^{F'} \ln \frac{PF^{F}}{MF} + \frac{1}{2} \ln \frac{PF^{F'}}{MF} B^{F} \ln \frac{PF^{F}}{MF}$ $= \alpha^{F'} \ln PF^{F} + \frac{1}{2} \ln PF^{F'} B^{F} \ln PF^{F} - \ln MF$ (A.1.5)

$$\ln PF^F \equiv (PCC, w^{LE})'$$

$$\ln PF = \alpha^F \ln PF^F + \frac{1}{2} \ln PF^F B^F \ln PF^F$$
(A.1.6)

$$= (\alpha_0^F + \frac{\beta_0^F}{1 + \exp(-\mu^F(t - \tau^F))}) \ln PF^F + \frac{1}{2} \ln PF^F B^F \ln PF^F$$

$$SF \equiv \begin{bmatrix} PCC. CC/MF \\ w^{LE}. LEIS/MF \end{bmatrix} = \alpha^F + B^F \ln PF^F$$
(A.1.7)

$$CC = SF_1 * MF/PCC \tag{A.1.8}$$

 $MF = PF.F \tag{A.1.9}$

$$= PCC. CC + w^{LE}. LEIS$$
(A.10)

 $LS = LH - \psi_C^L LEIS$

$$\bar{w}LH = (1 - tl^a) \frac{wLS}{1 - tl^m} + w\psi_C^{LE}LEIS$$

Income and savings:

$$W_t \equiv PK_t K_t + BG_t + BF_t \tag{A.1.12}$$

$$YF_{t} = (1 - tk) (PKD_{t}KD_{t} - PKD_{35}KD_{35}) - tpPK_{t-1}K_{t-1} + r_{t}BF_{t-1}$$

$$+ (1 - tk)YROW_{t}^{rec} + r_{t}BG_{t-1} + (1 - tk)GINT_{t}^{rec} + \bar{w}_{t}LH_{t}$$

$$+ GTRAN_{t} - TLUMP_{t} - twW_{t-1}$$
(A.1.13)

$$Y_{t} = (1 - tk) (PKD_{t}KD_{t} - PKD_{35}KD_{35}) - tpPK_{t-1}K_{t-1} + r_{t}BF_{t-1}$$

$$-(1 - tk)YROW_{t}^{rec} + r_{t}BG_{t-1} - (1 - tk)GINT_{t}^{rec} + w_{t}LS_{t} \frac{1 - tl^{a}}{1 - tl^{m}}$$

$$+ GTRAN_{t} - TLUMP_{t} - twW_{t-1}$$
(A.1.14)

$$S_{t} = YF_{t} - PF_{t}F_{t} - CR_{t} - TAXN_{t}$$

$$= YF_{t} - PCC_{t}CC_{t} - w_{t}LH_{t} - CR_{t} - TAXN_{t}$$

$$= Y_{t} - PCC_{t}CC_{t} - CR_{t} - TAXN_{t}$$
(A.1.15)

Household third stage decision, allocation of consumption goods:

NESTED STRUCTURE OF CONSUMPTION (A.1.16)

$CC = CC(N^{EN}, N^{FD}, N^{ND}, N_K, N^{SV})$	Commodity aggregate
$\begin{split} N^{EN} &= N^{EN}(N_6, N^{FL}, N_{18}, N_{19}) \\ N^{FD} &= N^{FD}(N_1, N_2, N_3, N_9) \\ N^{ND} &= N^{ND}(N^{CS}, N^{HA}, N_{12}, N^{NM}) \\ N^{SV} &= N^{SV}(N^{HR}, N^{HS}, N^{TR}, N^{MD}, N^{SM}) \end{split}$	Energy Food agg. Non-durables Services agg.
$N^{FL} = N^{FL}(N_7, N_8)$ $N^{CS} = N^{CS}(N_4, N_5)$ $N^{HA} = N^{HA}(N_{10}, N_{11})$	Fuel and wood Clothing and shoes Household articles
$N^{NM} = N^{NM}(N_{13}, N_{14}, N_{15}, N_{16})$	Miscellaneous non-durables

$N^{HR} = N^{HR}(N_{17}, N_{34})$	Rental housing
$N^{HS} = N^{HS}(N_{20}, N_{21}, N_{22}, N_{23})$	Household services
$N^{TR} = N^{TR}(N_{24}, N_{25})$	Transportation
$N^{MD} = N^{MD}(N_{26}, N_{27})$	Medical
$N^{SM} = N^{SM}(N_{28}, N^{BS}, N^{RS}, N_{32})$	Miscellaneous services
$N^{BS} = N^{BS}(N_{29}, N_{30})$ $N^{RS} = N^{RS}(N_{31}, N_{33})$	Business services Recreation

subscripts εI_{PCE}

Dual of **top** (m=1) tier consumption demands CC=CC(...) :

$$\ln V_{k} = \alpha^{H1} \ln P^{H1} + \frac{1}{2} \ln P^{H1} B^{H} \ln P^{H1} + (1 - \ln P^{H1} B_{l}) \ln M_{k} + \ln P^{H1} B_{pA} A_{k}$$
(A.1.17)

$$\ln P^{H1} = (\ln PN^{EN}, \ln PN^{FD}, PN^{ND}, PN^{K}, PN^{SV})$$
 $k \in I_{POP}$

$$\ln PCC = \iota' B^H \ln P^{H_1} \ln \frac{PCC.CC}{N^{eq}} - \alpha^H \ln P^{H_1} + \frac{1}{2} \ln P^{H_1} B^H \ln P^{H_1}$$
(A.1.18)

$$SN^{TOP} = \left(\frac{PN^{EN}N^{EN}}{PCC.CC}, \frac{PN^{FD}N^{FD}}{PCC.CC}, \frac{PN^{ND}N^{ND}}{PCC.CC}, \frac{PN^{K}N^{K}}{PCC.CC}, \frac{PN^{SV}N^{SV}}{PCC.CC}\right)$$
(A.1.19)
$$= \frac{\alpha^{H} + B^{H}\ln P^{H1} - B^{H}\iota\xi^{d} + B_{pA}\xi^{L}}{-1 + \iota'B^{H}\ln P^{H1}}$$

Price dual of **lower** tiers consumption demands $N^m(...)$:

$$\ln PN^m = \alpha^{Hm'} \ln P^{Hm} + \frac{1}{2} \ln P^{Hm'} B^{Hm} \ln P^{Hm} \qquad m \varepsilon I_{CNODE} \qquad (A.1.20)$$

$$\ln P^{Hm} \equiv (\ln PN_{m1}, \dots, \ln PN_{mi}, \dots, \ln PN_{m,im})' \qquad i \in I_{CNODEm}$$
(A.1.21)

$$SN^{m} = \begin{bmatrix} PN_{m1}N_{m1}/PN^{m}N^{m} \\ \cdots \\ PN_{m,im}N_{m,im}/PN^{m}N^{m} \end{bmatrix} = \alpha^{Hm} + B^{Hm} \ln PN^{Hm} \quad \begin{array}{c} m \ \varepsilon \ I_{CNODE} \\ mi \ \varepsilon \ I_{CNODEm} \end{array}$$
(A.1.22)

$$PN_{mi} \varepsilon \{PN_1, \dots, PN_{34}, PN^{EN}, \dots, PN^{RS}\}$$
$$N_{mi} \varepsilon \{N_1, \dots, N_{34}, N^{EN}, \dots, N^{RS}\}$$

$$PN_{1}N_{1} = SN_{1}^{FD} * SN_{2}^{TOP} * PCC.CC$$

$$PN_{2}N_{2} = SN_{2}^{FD} * SN_{2}^{TOP} * PCC.CC$$

$$PN_{34}N_{34} = SN_{2}^{HR} * SN_{1}^{SV} * SN_{5}^{TOP} * PCC.CC$$

$$VN = (PN_{1}N_{1}, ..., PN_{34}N_{34}, PKD_{C}KD_{C})'$$

$$PN = \mathbf{H}' PS^{H}$$

$$(A.1.24)$$
where $PS^{H} = (PS_{1}, ..., PS_{35}, PNCI_{C}, PKD_{C}, PLD_{C}).$

$$VC = (PS_{1}C_{1}, ..., PS_{35}C_{35}, ..., PLD_{C}LD_{C})'$$

$$= \mathbf{H} VN$$

$$C_{i} = VC_{i}/PS_{i}$$

$$i \in I_{INP}$$

$$(A.1.26)$$

$$C^{P} = (C_{1}, C_{2}, ..., C_{35})'$$

 $C \equiv (C_1, \dots, C_{35}, NCI_C, KD_C, LD_C)'$

NESTED STRUCTURE OF PRODUCTION		(A.2.1)
$QI_j = QI^j(KD_j, LD_j, QP^{jE}, QP^{jM})$	Industry output	
$\begin{aligned} QP^{jE} &= QP^{E}(QP_{3}^{j}, QP_{4}^{j}, QP_{16}^{j}, QP_{30}^{j}, QP_{31}^{j}) \\ QP^{jM} &= QP^{M}(QP_{6}^{j}, QP^{jMA}, QP^{jME}, QP^{jMN}, QP^{jMS}) \end{aligned}$	Energy aggregate Material aggregate	
$\begin{split} QP^{jMA} &= QP^{AG}(QP_{1}^{j}, QP_{7}^{j}, QP_{8}^{j}, QP^{jTX}, QP^{jWP}) \\ QP^{jME} &= QP^{ME}(QP^{jFM}, QP^{jMC}, QP^{jEQ}) \\ QP^{jMN} &= QP^{MN}(QP_{5}^{j}, QP_{15}^{j}, QP_{17}^{j}, QP_{19}^{j}, QP_{27}^{j}) \\ QP^{jMS} &= QP^{MS}(QP_{28}^{j}, QP_{32}^{j}, QP_{33}^{j}, QP_{34}^{j}, QP^{jOS}) \end{split}$	Agriculture products Metallic agg. Non-metallic agg. Service agg.	
$\begin{aligned} QP^{jTX} &= QP^{TX}(QP_{9}^{j}, QP_{10}^{j}, QP_{18}^{j}) \\ QP^{jWP} &= QP^{WP}(QP_{11}^{j}, QP_{12}^{j}, QP_{13}^{j}, QP_{14}^{j}) \\ QP^{jFM} &= QP^{FM}(QP_{2}^{j}, QP_{20}^{j}, QP_{21}^{j}) \\ QP^{jMC} &= QP^{MC}(QP_{22}^{j}, QP_{23}^{j}) \\ QP^{jEQ} &= QP^{EQ}(QP_{24}^{j}, QP_{25}^{j}, QP_{26}^{j}) \end{aligned}$	Textile agg. Wood and paper agg. Primary metal agg. Machinery agg. Equipment agg.	
$QP^{JOS} = QP^{OS}(QP_{29}^{J}, QP_{35}^{J}, QP_{NCI}^{J})$	Miscellaneous services	

Price dual of **top** tier of production functions $QI_j = QI(...)$:

$$PO_{j} = PO^{j} (PKD_{j}, PLD_{j}, PP^{jE}, PP^{jM}) \qquad j \varepsilon I_{IND}$$

$$\ln PO_{j} = \alpha_{0}^{j} + \alpha^{Pj'} \ln P^{Pj0} + \frac{1}{2} \ln P^{Pj0'} B^{Pj} \ln P^{Pj0} + \ln P^{Pj0'} B^{j}_{pt} g(t) \qquad (A.2.2)$$

$$+ \alpha_{t}^{j} g(t) + \frac{1}{2} \beta_{tt}^{j} g(t)^{2}$$

where $g(t) = \frac{1}{1 + \exp(-\mu^j (t - \tau^j))}$. and $\ln P^{Pj0} \equiv (\ln PKD_j, \ln PLD_j, \ln PP^{jEN}, \ln PP^{jM})'$

$$SP^{jTOP} = \begin{bmatrix} PKD_{j}KD_{j}/PO_{j}QI_{j} \\ ... \\ PP^{jM}QP^{jM}/PO_{j}QI_{j} \end{bmatrix} = \alpha^{Pj} + B^{Pj}\ln P^{Pj0} + B^{j}_{pt}g(t)$$
(A.2.3)

Price dual of **lower** tiers of production functions, $QP^{jm} = QP(...)$:

$$\ln PP^{jm} = \alpha_0^{jm} + \alpha^{Pjm} \ln P^{Pjm} + \frac{1}{2} \ln P^{Pjm} B^{Pjm} \ln P^{Pjm} \qquad m \varepsilon I_{PNODE} \qquad (A.2.4)$$

$$\ln P^{P_{jm}} \equiv (\ln PP_{m1}^{j}, \dots, \ln PP_{mi}^{j}, \dots, \ln PP_{m,im}^{j})' \qquad i\varepsilon I_{PNODEm}$$

$$SP^{jm} = \begin{bmatrix} PP_{m1}^{j}QP_{m1}^{j}/PP^{jm}QP^{jm} \\ ... \\ PP_{m,im}^{j}QP_{m,im}^{j}/PP^{jm}QP^{jm} \end{bmatrix} = \alpha^{Pjm} + B^{Pjm} \ln P^{Pjm}$$
(A.2.5)
$$PP_{mi}^{j} \varepsilon \{PS_{1}, ..., PS_{35}, PNCI_{j}, PP^{jMA}, ..., PP^{jOS} \}$$
$$QP_{mi}^{j} \varepsilon \{QP_{1}^{j}, ..., QP_{35}^{j}, NCI_{j}, QP^{jMA}, ..., QP^{jOS} \}$$
$$VP^{j} = (PS_{1}QP_{1}^{j}, ..., PS_{35}QP_{35}^{j}, PNCI_{j}NCI_{j}, PKD_{j}KD_{j}, PLD_{j}LD_{j})'$$
$$VQI = (PO_{1}QI_{1}, ..., PO_{35}QI_{35})'$$

Taxes.

$$PI_{j} = (1 + tt_{j})PO_{j} \qquad j \in I_{IND}$$

$$VQI^{tt} \equiv (PI_{1}QI_{1}, \dots, PI_{35}QI_{35})'$$
(A.2.6)

$$= Diag(\iota + tt) VQI$$

Commodities from industry outputs:

$$PC = \mathbf{M}' PI$$
 (A.2.7)

$$VQC \equiv (PC_1QC_1, \dots, PC_{35}QC_{35})'$$
(A.2.8)

$$= \mathbf{M'} V Q I^{tt}$$

$$QC_i = VQC_i/PC_i$$
 $i \in I_{COM}$ (A.2.9)

The input-output USE matrix:

$$A_{1j} = SP_1^{jAG} * SP_2^{jM} * SP_4^{jTOP}$$

$$A_{2j} = SP_1^{jFM} * SP_1^{jME} * SP_3^{jM} * SP_4^{jTOP}$$

$$\dots \dots \dots \dots \dots \dots \dots \dots \dots$$
(A.2.10)

$$A_{35j} = SP_2^{jOS} * SP_5^{jMS} * SP_5^{jM} * SP_4^{jTOP}$$

$$A_{j} \equiv (A_{1j}, A_{2j}, \dots, A_{35j})' \qquad j \in I_{IND}$$

$$A = [A_{1}, A_{2}, \dots, A_{35}]$$

$$PNCI_{j}NCI_{j} = SP_{3}^{jOS} * SP_{5}^{jMS} * SP_{5}^{jM} * SP_{4}^{jTOP} * PO_{j} * QI_{j}$$

$$PKD_{j}KD_{j} = SP_{1}^{jTOP} * PO_{j} * QI_{j}$$

$$PLD_{j}LD_{j} = SP_{2}^{jTOP} * PO_{j} * QI_{j}$$

$$KD_{4} = \overline{KD}_{4}$$

$$(oil sector)$$

$$(A.2.16)$$

A.3 The Bank and Investment demands

Max
$$\sum_{t=u}^{\infty} \frac{(1-tk)(PKD_t \psi^K K_{t-1} - tpPK_{t-1}K_{t-1}) - PII_t I_t^a}{\prod_{s=u}^t 1 + r_s}$$
(A.3.1)

subject to

$$K_t = (1 - \delta)K_{t-1} + \psi^I I_t^a$$
(A.3.2)

Hamiltonian :

$$\frac{(1-tk)(PKD_t\psi^K K_{t-1} - tpPK_{t-1}K_{t-1}) - PII_tI_t^a}{\prod_{s=u}^t 1 + r_s} + \frac{\lambda_t}{\prod_{s=u}^t 1 + r_s} \left((1-\delta)K_{t-1} + \psi^I I_t^a - K_t\right)$$
(A.3.3)

Euler equation :

$$(1+r_t)\frac{PII_{t-1}}{\psi_{t-1}^I} = (1-tk)(PKD_t\psi_t^K - tp PK_{t-1}) + (1-\delta)\frac{PII_t}{\psi_t^I}$$
(A.3.4)

Aggregation relationships.

$$PK_t = \psi_t^{PK} PII_t \tag{A.3.5}$$

$$KD_t = \psi_t^K K_{t-1} \tag{A.3.6}$$

$$\psi_t^I = \alpha^I + \frac{\beta^I}{1 + \exp(-\mu^I (t - \tau^I))}$$
 (A.3.7)

$$\psi_t^{PK} = \alpha^{PK} + \frac{\beta^{PK}}{1 + \exp(-\mu^{PK}(t - \tau^{PK}))}$$
(A.3.8)

 $VII = PII. I^a \tag{A.3.9}$

$$\begin{split} I^{a} &= I^{a}(I^{fixed}, I^{inventory}) & & & & & & & \\ Aggregate investment & & & & \\ I^{fixed} &= I^{FX}(I^{long}, I^{short}) & & & & & \\ I^{inventory} &= I^{IX} & & & & & \\ I^{long} &= I^{LG}(I_{6}, I_{33}) & & & & & \\ I^{short} &= I^{SH}(I^{vehicles}, I^{machinery}, I^{services}) & & & & & \\ Short-lived investment agg. & & & \\ I^{vehicles} &= I^{VE}(I_{24}, I_{25}) & & & & \\ I^{vehicles} &= I^{VE}(I_{22}, I_{23}, I^{other-m}) & & & & \\ I^{services} &= I^{SV}(I_{32}, I^{other-s}) & & & & \\ Services &= gsv(I_{32}, I^{other-s}) & & & & \\ I^{other-m} &= I^{MO}(I^{gadgets}, I^{wood}, I^{nonmetal}, I^{misc}) & & & \\ I^{other-m} &= I^{MO}(I_{20}, I_{21}, I_{26}) & & & \\ I^{sadgets} &= I^{GD}(I_{20}, I_{21}, I_{26}) & & & \\ I^{wood} &= I^{WD}(I_{11}, I_{12}) & & & & \\ I^{misc} &= I^{OO}(I^{textile}, I_{13}, I^{mining}) & & & \\ I^{misc} &= I^{OO}(I^{textile}, I_{13}, I^{mining}) & & & \\ I^{misc} &= I^{OO}(I^{textile}, I_{13}, I^{mining}) & & & \\ I^{textile} &= I^{TX}(I_{9}, I_{10}, I_{18}, I_{NCI}) & & \\ I^{textile} &= I^{MO}(I_{2}, I_{2}, I_{2}) & & & \\ \end{array}$$

At top tier of investment functions I=I(...) :

$VII = VII^{fixed} + VII^{invy}$	(A.3.11)

$$\frac{VII^{invy}}{VII} = \alpha^{IY} \tag{A.3.12}$$

Price dual of investment demand tiers
$$I^m = I^m(...)$$
:
 $VI_i^{invy} = \alpha_i^{IY} VII^{invy}$ i ϵI_{COM} (A.3.13)
 $\ln PII^m = \alpha^{Im} \ln P^{Im} + \frac{1}{2} \ln P^{Im'} B^{Im} \ln P^{Im}$ $m \epsilon I_{INV}$ (A.3.14)
 $\ln P^{Im} \equiv (\ln PII_{m1}, ..., \ln PII_{mi}, ..., \ln PII_{m,im})'$ i ϵI_{INVm}

$$SI^{m} = \begin{bmatrix} PII_{m1}I_{m1}^{f}/PII^{m}I^{m} \\ \cdots \\ PII_{m,im}I_{m,im}^{f}/PII^{m}I^{m} \end{bmatrix} = \alpha^{Im} + B^{Im} \ln PII^{Im} \qquad \begin{array}{c} m \ \varepsilon \ I_{INV} \\ mi \ \varepsilon \ I_{INVm} \end{array}$$
(A.3.15)
$$PII_{mi} \ \varepsilon \ \{PS_{1}, \dots, PS_{35}, PII^{fixed}, \dots, PII^{mining}\}$$

$$I_{mi} \varepsilon \{I_1^f, \ldots, I_{35}^f, I^{fixed}, \ldots, I^{mining}\}$$

Values of individual commodities making up aggregate investment demand:

$$VI_{1} = 0 + VI_{1}^{invy}$$
(A.3.16)

$$VI_{2} = SI_{1}^{MG} * SI_{3}^{OO} * SI_{4}^{MO} * SI_{3}^{MC} * SI_{2}^{SH} * SI_{2}^{FX} VII^{fixed} + VI_{2}^{invy}$$
(A.3.16)

$$VI_{34} = SI_{1}^{SO} * SI_{2}^{SV} * SI_{3}^{SH} * SI_{2}^{FX} VII^{fixed} + VI_{34}^{invy}$$
(A.3.17)

$$VI_{35} = 0$$

$$VI = (PS_{1}I_{1}, \dots, PS_{35}I_{35}, PNCI_{I}NCI_{I})'$$
(A.3.17)

$$VI = (I_{1}, \dots, I_{35})'$$
(A.3.17)

A.4 The Government

Stock-flow relations.

$$BG_t = BG_{t-1} + \Delta G + GFI + \Delta P_t^{BG} + BG^{disc}$$
(A.4.1)

$$BG_t * = BG_{t-1} * - GFI - \Delta P_t^{BG*}$$
(A.4.2)

Government expenditures on goods.

$$VGG = \Delta G + \sum_{j} tt_{j} PO_{j}QI_{j} + \sum_{i} tr_{i} PM_{i}M_{i} + tkPKD. KD + tk(rBG + rBF)/(1 - tk)$$
(A.4.3)
+ $tk(GINT^{rec} + YROW^{rec}) + tl^{a}wLS/(1 - tl^{m}) + tpPK. K$
+ $tw(PK. K + BG + BF) + TAXN + (1 - tk)PKD_{35}KD_{35} + TAXSS$
+ $TLUMP$
- $r \frac{BG}{1 - tk} - GINT^{rec} - GINTR - GTRAN - GR$

$$VG_i = \alpha_i^G VGG$$
 $i \varepsilon I_{INP}$ (A.4.4)

$$G_i = VG_i / PS_i \tag{A.4.5}$$

$$VG \equiv (PS_1G_1, ..., PS_{35}G_{35})'$$
$$G^P \equiv (G_1, ..., G_{35})'$$
$$G \equiv (G_1, ..., G_{35}, NCI_G, KD_G, LD_G)'$$

 $GFI = -GINTR - GR - GM \tag{A.4.6}$

$$GINT^{rec} = GINT - \frac{r}{1 - tk} BG_{t-1}$$
(A.4.7)

A.5 The Rest-of-the-World

Non-competitive imports.

$$PNCI_{j} = e (1 + tr_{j}^{n}) PNCI_{j}^{*}$$
 $j = 1, ..., 35, C, I, G$ (A.5.1)

$$PM_i = e (1 + tr_j) PM_i^* \qquad i \varepsilon I_{COM} \qquad (A.5.2)$$

Competitive imports and domestic output making up total supply:

$$QS_i = QS(QC_i, M_i) \qquad i\varepsilon I_{COM}$$
(A.5.3)

with the price dual:

$$\ln PS_{i} = (\alpha_{0}^{Mi} + \frac{\beta_{0}^{Mi}}{1 + e^{-\mu(t-\tau)}}) \ln P^{Mi} + \frac{1}{2} \ln P^{Mi'} B^{Mi} \ln P^{Mi}$$

$$\ln P^{Mi} \equiv (\ln PC_{i}, \ln PM_{i})'$$
(A.5.4)

$$PM_i = e (1 + tr_i) PM_i * \qquad i \varepsilon I_{COM}$$
(A.5.5)

$$SD^{i} = \begin{bmatrix} PC_{i}QC_{i}/PS_{i}QS_{i} \\ PM_{i}M_{i}/PS_{i}QS_{i} \end{bmatrix} = \alpha_{0}^{Mi} + \frac{\beta_{0}^{Mi}}{1 + \exp(-\mu^{Mi}(t - \tau^{Mi})} + B^{Mi}\ln P^{Mi}$$
(A.5.6)

$$PS_iQS_i = PC_iQC_i + PM_iM_i \qquad i\varepsilon I_{COM}$$
(A.5.7)

$$VQS \equiv (PS_1QS_1, ..., PS_{35}QS_{35})'$$

$$VM \equiv (PM_1M_1, ..., PM_{35}M_{35})'$$

$$SM \equiv (SD_2^1, SD_2^2, ..., SD_2^{35})'$$

$$M \equiv (M_1, M_2, ..., M_{35})'$$

Exports.

$$X_{i} = X_{i}(Y^{*}, (1 + tr_{i}^{*})PC_{i}/eP_{i}^{*}) \qquad i\varepsilon I_{COM}$$
(A.5.8)

$$= EX_{i0}(Y^*) \left(\frac{(1+tr_i^*)PC_i}{e}\right)^{\eta_i} + X_i^{tr}$$
(A.5.9)

$$X_i^{tr} = \frac{PCC. XR}{\sum PC_i C_i} C_i \tag{A.5.10}$$

$$EX_{it} = \alpha_i^x + \lambda_i^x \ln Y_t *$$

$$X \equiv (X_1, \dots, X_{35})'$$
(A.5.11)

$$VX \equiv (PC_1X_1, \dots, PC_{35}X_{35})' \tag{A.5.12}$$

Current account and net foreign assets.

$$CA = \sum_{i} PC_{i}X_{i} + \frac{r}{1 - tk} BF + YROW^{rec} - \sum_{i} PM_{i}M_{i} - \sum_{j} PNCI_{j}NCI_{j}$$
(A.5.13)
$$-\bar{i}BG^{*} - GR - CR$$

$$BF_t = BF_{t-1} + CA_t - GFI + BF^{disc} + \Delta P^{BF}$$
(A.5.14)

$$YROW^{rec} = YROW - \frac{r}{1 - tk} BF$$
(A.5.15)

A.6 Markets

Final demands.

$$VFD_{i} = PS_{i} (C_{i}^{P} + I_{i}^{P} + G_{i}^{P}) + PC_{i}X_{i} \qquad i\varepsilon I_{COM}$$

$$VFD \equiv (VFD_{1}, \dots, VFD_{35})'$$
(A.6.1)

$$= VC + VI + VG + VX$$

Supply equal demand for commodities.

$$PS_i QS_i = \sum_{j=1}^{35} PS_i QP_i^j + VFD_i$$
(A.6.2)

$$VQS = \mathbf{A} VQI + VFD \tag{A.6.3}$$

$$VQC = Diag(SM) VQS$$
 $VQS = Diag(1/SM) VQC$ (A.6.4)

 $Diag(1/SM) VQC - \mathbf{A} VQI = VFD$

$$Diag(1/SM)\mathbf{M}' Diag(\iota + tt) VQI - \mathbf{A} VQI = VFD$$

$$[Diag(1/SM)\mathbf{M}' Diag(t+tt) - \mathbf{A}] VQI = VFD$$
(A.6.5)

Saving-investment balance.

$$VII = S - (BG_t - BG_{t-1}) - (BF_t - BF_{t-1})$$
(A.6.6)

Demand equal supply of capital.

$$PKD_{j} = \psi_{j}^{K} PKD \qquad j\varepsilon I_{BUY}$$
(A.6.7)

$$\sum_{j=1}^{C} PKD_j KD_j = PKD. KD$$
(A.6.8)

$$\sum_{j=1}^{C} \psi_{j}^{K} K D_{j} = K D = \psi^{K} K_{t-1}$$
(A.6.9)

Demand equal supply of labor.

$$PLD_{j} = \psi_{j}^{L} \frac{w}{(1 - tl^{m})} \qquad j \in I_{BUY}$$

$$(A.6.10)$$

$$w^{LE} = \psi_{C}^{L} w \qquad (A.6.11)$$

$$(1 - tl^m) \sum PLD_j LD_j = w LS = w (LH - \psi_C^L LEIS)$$
(A.6.12)

A.7 Steady state equilibrium

$Prices_T = Prices_{T-1}$	(A.7.1)
$Quantities_T = Quantities_{T-1}$	(A.7.2)
$\Delta G_T = 0$	(A.7.3)
$CA_T = 0$	(A.7.4)
$r_t = \rho$	(A.7.5)
$\psi^I I_T^a = \delta K^T$	(A.7.6)

A.8 GLOSSARY

A.8.1 Values and other variables:

Α		IO Use matrix; the use of commodities by each industry
A_i	jeI _{IND}	Columns of A
A_{ij}	iεI _{COM} jεI _{IND}	Share of input i in producing output j
BF		Net US private sector claims on rest-of-world
BF^{disc}		Stock-flow discrepancy in the US external accounts
BG		Government debt to domestic households
BG^{disc}		Stock-flow discrepancy in the US government accounts
BG *		Government debt to rest-of-world
CA		Current account surplus of the US
CR		Households transfer to rest-of-world
EX_{it}		Exogenous projected exports.
GFI		Government net foreign investment
GINT		Government interest payments on public debt to households
		(including social insurance funds.)
GINT ^{rec}		Arbitrage adjustment for interest income on
		government bonds
GINTR		Government interest payments to rest-of-world
GM		Government net imports
GR		Government transfers to rest-of-world
GTRAN		Government transfers to households
M_k		Expenditures by household k
MF		Full expenditures (including leisure)
SD^i	ieI _{COM}	Shares of domestic output, imports in total supply of i
SF		Vector of shares of commodities and leisure in
		full consumption
SI^m	$m \varepsilon I_{INV}$	Shares of investment at node m
SM		Vector of shares of imports in total supply.
SN^m	$m \varepsilon I_{CNODE}$	Shares of consumption at node m
SP ^{jm}	$j \varepsilon I_{IND} m \varepsilon I_{PNODE}$	Shares of production at node m of industry j
S		Savings
TLUMP		Lump sum tax
TAXN		Non-tax receipts of the government
VC		Vector of values of household purchases of commodities
VFD		Vector of values of final demand for commodities
VG		Vector of values of government demand for commodities
VGG		Value of government purchases
VII		Value of domestic private investment
VI		Vector of values of investment inputs
VN		Vector of values of household purchases of NIPA
		commodities
VP^{j}	$j \varepsilon I_{IND}$	Vector of values of inputs into industry j
VQC		Vector of values of domestic commodity output

VQI	Vector of values (to producer) of domestic industry output
VQI ^{tt}	Vector of values of domestic industry output inclusive of
	sales tax
VQS	Vector of values of total commodity supply
VX	Vector of values of commodity exports
W	Tangible wealth of private sector (households)
WF	Full wealth of private sector (households)
XR	Travel exports: Expenditures by foreign tourists in U.S.
Y	Income
YF	Full income (including imputations on leisure)
YROW	Net income from rest-of-world
YROW ^{rec}	Arbitrage adjustment for income from rest-of-world
<i>Y</i> *	Exogenous projected rest-of-world income
ΔG	Government deficit
ΔP^{BF}	Capital gains on net foreign assets
ΔP^{BG}	Capital gains on government bonds
ΔP^{BG*}	Capital gains on government liabilities to ROW
ψ^{I}	Aggregation constant of investment goods
ψ^{PK}	Aggregation constant of price of capital

A.8.2 Quantities:

CC		Aggregate consumption (commodities)
C^{P}		Vector of quantities of consumption of produced commodities.
С		Vector of consumption, commodities & non-produced goods.
C_i	ieI _{INP}	Consumption of IO commodity i
F		Full consumption (commodities and leisure)
G^P		Vector of government purchases of commodities.
G		Vector of government purchases, commodities and
		non-produced goods.
G_i	ieI _{NCOM}	Government purchases of commodity i
I^a		Aggregate investment in domestic capital stock
Ι		Vector of commodities used in aggregate investment.
I^m	$m \varepsilon I_{INV}$	Investment aggregate m
I_i^f	$i \varepsilon I_{NCOM}$	Investment of commodity i in fixed investment
I_i	ieI _{NCOM}	Investment of commodity i in domestic capital stock
Κ		Capital stock located in the U.S.
KD		Quantity of total capital input normalized such that its rental price is one
KD _i	jeI _{NBUY}	Quantity of capital input into sector j
LD_{i}^{j}	$j \varepsilon I_{NBUY}$	Quantity of labor input into sector j
LEIS		Leisure time
LH		Time endowment of economy
LS		Labor supply

	Vector of competitive imports.
ieI _{COM}	Imports of (competitive) commodities
	Number of household equivalent members in economy
$m \varepsilon I_{CNODE}$	Consumption of NIPA aggregate m
ieI _{PCE}	Consumption of NIPA commodities
$j \varepsilon I_{NBUY}$	Non-competitive imports into sector j
ieI _{COM}	Total domestic output of commodity i
jeI _{IND}	Output of industry j
$j \varepsilon I_{IND} m \varepsilon I_{PNODE}$	Aggregate input m into industry j
iεI _{COM} jεI _{IND}	Input of commodity i into industry j
ieI _{COM}	Total supply of commodity i
	Vector of exports.
ieI _{COM}	Exports of commodity i
ieI _{COM}	Travel exports of commodity i
	iEI _{COM} mEI _{CNODE} iEI _{PCE} jEI _{NBUY} iEI _{COM} jEI _{IND} mEI _{PNODE} iEI _{COM} jEI _{IND} iEI _{COM}

A.8.3 Prices:

e		"exchange rate"
<i>i</i> *		interest rate on private US owned foreign assets
r		After tax interest rate
W		Price of total hours (work and leisure)
\bar{w}		After tax average wage rate
w^{LE}		Price of leisure
$P_i *$	ieI _{COM}	World price for US exports.
P^{Hm}	$m \epsilon I_{CNODE}$	Vector of prices at node m of consumption function
P^{im}	$m \varepsilon I_{INV}$	Vector of prices at node m of investment function
P^{Pjm}	$j \varepsilon I_{IND}$ $m \varepsilon I_{PNODE}$	Vector of prices at node m of industry j's production function
PC_i	ieI _{COM}	Price of domestically produced commodities
PF		Price of full consumption
PI_j	jeI _{IND}	Price of industry output paid by buyers
PII		Price of aggregate investment goods
PII^m	$m \epsilon I_{INV}$	Price of investment aggregate m.
PII_{mi}	$mi \varepsilon I_{INVm}$	Union of above aggregate investment prices
		and supply prices.
PK		Price of capital stock
PKD_j	$j \varepsilon I_{BUY}$	Rental price of capital paid by producer
PLD_{j}	$j \varepsilon I_{BUY}$	Price of labor paid by employers
PM_i	ieI _{COM}	Price of non-competitive imports paid by importers
PN_n	$n \varepsilon I_{NIPA}$	Price of NIPA PCE commodity
PN^m	$m \varepsilon I_{CNODE}$	Price of consumption aggregate m
PN_{mi}	$mi \varepsilon I_{CNODEm}$	Union of above 2 sets of consumption prices
$PNCI_i$	$j \varepsilon I_{BUY}$	Price of imports paid by importers
PO_j		Price of industry output received by producer
PP^{jm}	jeI _{IND} meI _{PNODE}	Price of aggregate input m into industry j

PP_{mi}^{j}	$mi \varepsilon I_{PNODEm}$	Union of above set of aggregate production prices
		and prices of inputs.
PS		Vector of supply prices.
PS_i	$i \varepsilon I_{COM}$	Price of commodities to buyers
PS^H		Vector of supply prices and prices of non-produced
		items consumed by household sector.

A.8.4 Parameters of behaviorial equations:

ρ		Pure rate of time preference
σ		Household intertemporal elasticity of substitution
α^F		Shares (at unit prices) of commodities and leisure in full consumption
B^F		Share elasticity of components of full consumption
		(w.r.t. prices)
α_0^F		Shares (at $t = -\infty$) of commodities and leisure in F
β_0^F		Trend coefficient of commodities and leisure in F
μ^{F}		Slope of logistic curve in F
$ au^F$		Mid-point of logistic curve
α^{Hm}	$m \varepsilon I_{CNODE}$	Shares (at unit prices) of consumption at node m
B^{Hm}		Share elasticity of consumption (w.r.t. prices) at node m
B_{pA}		Coefficients on demographic characteristics of CC function
ξ^d		Distribution coefficient of CC function
ξ^L		Vector of demographic dummies
$lpha_0^j$	$j \varepsilon I_{IND}$	Cost function constant
α^{Pjm}	$j \varepsilon I_{IND}$ $m \varepsilon I_{PNODE}$	Shares (at unit prices) of of inputs into industry j at node m
B^{Pjm}		Share elasticity of input demands (w.r.t. prices) at node m
B^{Pjm} B^{j}_{pt}	jeI _{IND}	Share elasticity of input demands (w.r.t. prices) at node m Biases of technical change
B^{Pjm} B^{j}_{pt} μ^{j}	jɛI _{IND}	Share elasticity of input demands (w.r.t. prices) at node m Biases of technical change Slope of logistic curve representing index of technology
$B^{Pjm} \\ B^{j}_{pt} \\ \mu^{j} \\ \tau^{j}$	jɛI _{IND}	Share elasticity of input demands (w.r.t. prices) at node m Biases of technical change Slope of logistic curve representing index of technology Mid-point of logistic curve
B^{Pjm} B^{j}_{pt} μ^{j} τ^{j} α^{IY}	jeI _{IND}	Share elasticity of input demands (w.r.t. prices) at node m Biases of technical change Slope of logistic curve representing index of technology Mid-point of logistic curve Share of inventory investment in total investment
B^{Pjm} B^{j}_{pt} μ^{j} τ^{j} α^{IY} α^{IY}_{i}	jεI _{IND} iεI _{COM}	Share elasticity of input demands (w.r.t. prices) at node m Biases of technical change Slope of logistic curve representing index of technology Mid-point of logistic curve Share of inventory investment in total investment Share of inventory investment going to commodity i
B^{Pjm} B^{j}_{pt} μ^{j} τ^{j} α^{IY} α^{IY}_{i} α^{Im}	jεI _{IND} iεI _{COM} mεI _{INV}	Share elasticity of input demands (w.r.t. prices) at node m Biases of technical change Slope of logistic curve representing index of technology Mid-point of logistic curve Share of inventory investment in total investment Share of inventory investment going to commodity i Shares (at unit prices) of commodities at investment node m
B^{Pjm} B^{j}_{pt} μ^{j} τ^{j} α^{IY} α^{IY}_{i} B^{Im}	jεI _{IND} iεI _{COM} mεI _{INV} mεI _{INV}	Share elasticity of input demands (w.r.t. prices) at node m Biases of technical change Slope of logistic curve representing index of technology Mid-point of logistic curve Share of inventory investment in total investment Share of inventory investment going to commodity i Shares (at unit prices) of commodities at investment node m Shares elasticity of components of totalinvestment at node m
B^{Pjm} B^{j}_{pt} μ^{j} τ^{j} α^{IY} α^{IY}_{i} α^{Im} B^{Im} α^{I}	jεI _{IND} iεI _{COM} mεI _{INV} mεI _{INV}	Share elasticity of input demands (w.r.t. prices) at node m Biases of technical change Slope of logistic curve representing index of technology Mid-point of logistic curve Share of inventory investment in total investment Share of inventory investment going to commodity i Shares (at unit prices) of commodities at investment node m Shares elasticity of components of totalinvestment at node m
B^{Pjm} B^{j}_{pt} μ^{j} τ^{j} α^{IY} α^{IY} α^{Im} B^{Im} α^{I}	jεI _{IND} iεI _{COM} mεI _{INV} mεI _{INV}	Share elasticity of input demands (w.r.t. prices) at node m Biases of technical change Slope of logistic curve representing index of technology Mid-point of logistic curve Share of inventory investment in total investment Share of inventory investment going to commodity i Shares (at unit prices) of commodities at investment node m Shares elasticity of components of totalinvestment at node m Constant term in logistic curve of aggregation constant converting investment into capital, ψ^{I}
B^{Pjm} B^{j}_{pt} μ^{j} τ^{j} α^{IY} α^{IY}_{i} β^{I}	jεI _{IND} iεI _{COM} mεI _{INV} mεI _{INV}	Share elasticity of input demands (w.r.t. prices) at node m Biases of technical change Slope of logistic curve representing index of technology Mid-point of logistic curve Share of inventory investment in total investment Share of inventory investment going to commodity i Shares (at unit prices) of commodities at investment node m Shares elasticity of components of totalinvestment at node m Constant term in logistic curve of aggregation constant converting investment into capital, ψ^{I} Trend coefficient of logistic curve, ψ^{I}
B^{Pjm} B^{j}_{pt} μ^{j} τ^{j} α^{IY} α^{IY}_{i} α^{Im} B^{Im} α^{I} β^{I} μ^{I}	jεI _{IND} iεI _{COM} mεI _{INV} mεI _{INV}	Share elasticity of input demands (w.r.t. prices) at node m Biases of technical change Slope of logistic curve representing index of technology Mid-point of logistic curve Share of inventory investment in total investment Share of inventory investment going to commodity i Shares (at unit prices) of commodities at investment node m Shares elasticity of components of totalinvestment at node m Constant term in logistic curve of aggregation constant converting investment into capital, ψ^{I} Trend coefficient of logistic curve, ψ^{I} Slope of logistic curve, ψ^{I}

α^{PK}		Constant term in logistic curve of aggregation
		constant converting price of investment into
		price of capital, ψ^{PK}
β^{PK}		Trend coefficient of logistic curve, ψ^{PK}
μ^{PK}		Slope of logistic curve, ψ^{PK}
$ au^{PK}$		Mid-point of logistic curve, ψ^{PK}
$lpha^{Mi}$	ieI _{COM}	Shares (at unit prices) of domestic commodities and imports in total supply
$lpha_0^{Mi}$		Shares (at t= $-\infty$) of domestic commodities and imports
β_0^{Mi}		Trend coefficient of domestic commodities and imports
μ^{Mi}		Slope of logistic curve representing import penetration
$ au^{Mi}$		Mid-point of logistic curve
B^{Mi}	ieI _{COM}	Shares elasticity of components of total supply
η^i	ieI _{COM}	Export price elasticities
α_i^G	ieI _{INP}	Share of government expenditures on i
δ		Rate of depreciation of capital stock
ψ^{K}		Aggregation constant of capital services
ψ_j^K	$j \varepsilon I_{BUY}$	Aggregation constants of capital
ψ_j^L	$j \varepsilon I_{BUY}$	Aggregation constants of labor
ψ_C^L		Aggregation constants of leisure
н		Bridge matrix linking NIPA "Personal Cons. Expenditures" commodities to IO commodities
м		IO Make matrix: the contribution of each industry to
TAT		io make matrix, the contribution of each moustly to

A.8.5 Tax rates:

tk		Tax rate on capital income
tl^a		Average tax rate on labor income
tl^m		Marginal tax rate on labor income
tp		Property tax rate
tr _i	ieI _{COM}	Tariff rate on competitive imports
tr_i^n	$i \varepsilon I_{BUY}$	Tariff rate on non-comp imports
$tr_i *$	ieI _{COM}	World tariff rate on US exports
tt j	jeI _{IND}	Indirect business tax (sales tax)
tw		Wealth tax rate (estate taxes)