Appendix A. Equations of the Model & Glossary (Version 10)

A.0 Notation A.1 Household Sector A.2 Producer Model A.3 Capital and Investment A.4 Government and Pollution A.5 The Rest of the World A.6 Markets A.7 Steady State Equilibrium A.8 Glossary

A.0 Notation:

Time	t εI_T	$I_T = \{1, 2, \dots, T, \dots\}$
Industry/	Producer jε I _{IND}	$I_{IND} = \{1, 2, \dots, 35\}$
IO Com	nodities i ε I _{COM}	$I_{COM} = \{1, 2, \dots, 35\}$
Industry	Inputs iε I _{INP}	$I_{INP} = \{1, 2, \dots, 35, NCI, K, L\}$
NIPA PC	E Commodities n εI_{PCE}	$I_{PCE} = \{1, 2, \dots, 38\}$
Purchase	rs of domestic outp j εI_{BUY}	ut $I_{BUY} = \{1, 2, \dots, 35, C, I, G, X\}$
Househo	lds k <i>e I_{POP}</i>	
Nodes of	production function m ε I_{PNODE} i ε I_{PNODEm}	
Nodes of		ion $I_{CNODE} = \{EN, FD, \dots, RS\}$ I_{CNODEm} in Table 2.3
Nodes of	investment function εI_{INV} i εI_{INVm}	n $I_{INV} = \{ fixed,, mining \}$ I_{INVm}
Externali	ties x ε I _{EXT}	$I_{EXT} = \{1, 2, 3, 4\}$
Vector of	1's 1	
Transpos	e of matrix A A'	
Diagonal	matrix of a vector <i>Diag</i> (<i>v</i>)	V

A.1 Household Sector

Household first stage decision; Euler equation.

Max
$$\sum_{t=1}^{\infty} \frac{N_t^{eq}}{(1+\rho)^t} \left(F_t/N_t^{eq}\right)^{1-\frac{1}{\sigma}}$$
 (A.1.1)

subject to

$$WF = PK_0K_0 + BG_0 + BF_0 + \sum_{t=1}^{\infty} \frac{\bar{w}_t LH_t + misc_t}{\prod_{s=1}^t 1 + r_s} \ge \sum_{t=1}^{\infty} \frac{PF_t F_t}{\prod_{s=1}^t 1 + r_s}$$
(A.1.2)

where

 $misc = GTRAN + (1 - tk)(GINT^{rec} + YROW^{rec}) - twW_{t-1} - TLUMP - CR - TAXN$

$$\left[\frac{F_t/N_t^{eq}}{F_{t-1}/N_{t-1}^{eq}}\right]^{\frac{1}{\sigma}} = \frac{1+r_t}{1+\rho} \frac{PF_{t-1}}{PF_t}$$
(A.1.3)

Household second stage decision, goods-leisure choice.

$$F_t = F(CC_t, LEIS_t)$$
 Formulated with the price dual: (A.1.4)

$$VV(PCC, w^{LE}, MF) = \max F(CC, LEIS)$$
 s.t. $MF = PCC. CC + w^{LE}. LEIS$

$$-\ln VV = \alpha^{F'} \ln \frac{PF^{F}}{MF} + \frac{1}{2} \ln \frac{PF^{F'}}{MF} B^{F} \ln \frac{PF^{F}}{MF}$$

$$= \alpha^{F'} \ln PF^{F} + \frac{1}{2} \ln PF^{F'}B^{F} \ln PF^{F} - \ln MF$$

$$\ln PF^{F} \equiv (PCC, w^{LE})'$$
(A.1.5)

$$\ln PF = \alpha^F \ln PF^F + \frac{1}{2} \ln PF^F B^F \ln PF^F$$
(A.1.6)

$$= (\alpha_0^F + \frac{\beta_0^F}{1 + \exp(-\mu^F(t - \tau^F))}) \ln PF^F + \frac{1}{2} \ln PF^F B^F \ln PF^F$$

$$SF \equiv \begin{bmatrix} PCC. CC/MF \\ w^{LE}. LEIS/MF \end{bmatrix} = \alpha^F + B^F \ln PF^F$$
(A.1.7)

$$CC = SF_1 * MF/PCC \tag{A.1.8}$$

$$MF = PF.F \tag{A.1.9}$$

 $= PCC. CC + w^{LE}. LEIS$ (A.10)

$$LS = LH - \psi_C^L LEIS \tag{A.1.11}$$

$$\bar{w}LH = (1 - tl^a) \frac{wLS}{1 - tl^m} + w\psi_C^{LE}LEIS$$

Income and savings:

$$W_t \equiv PK_t K_t + BG_t + BF_t \tag{A.1.12}$$

$$YF_t = capital_income + \bar{w}_t LH_t + GTRAN_t - TLUMP_t - twW_{t-1}$$
(A.1.13)

$$Y_{t} = capital_income + w_{t}LS_{t} \frac{1 - tl^{a}}{1 - tl^{m}}$$

$$+ GTRAN_{t} - TLUMP_{t} - twW_{t-1}$$

$$capital_income = \sum_{j} cash_flow_{j} + PKD_{h}KD_{h} + t_{h}BH - t_{h}^{p}PIIK_{ht-1}$$

$$+ (1 - t_{n}^{e})(i_{t}BF_{t-1} - YROW_{t}^{rec} + i_{t}BG_{t-1} - GINT_{t}^{rec})$$
where $cash_flow_{j}$ is (A.3.48); BH is (A.3.51).

$$S_{t} = YF_{t} - PF_{t}F_{t} - CR_{t} - TAXN_{t} + \theta PII_{t}I_{t}^{a}$$

$$= YF_{t} - PCC_{t}CC_{t} - w_{t}LH_{t} - CR_{t} - TAXN_{t}$$

$$= Y_{t} - PCC_{t}CC_{t} - CR_{t} - TAXN_{t}$$
(A.1.15)

Household third stage decision, allocation of consumption goods:

NESTED STRUCTURE OF CONSUMPTION (A.1.16)

$CC = CC(N^{EN}, N^{FD}, N^{ND}, N_K, N^{SV})$	Commodity aggregate
$\begin{split} N^{EN} &= N^{EN}(N_6, N^{FL}, N_{18}, N_{19}) \\ N^{FD} &= N^{FD}(N_1, N_2, N_3, N_9) \\ N^{ND} &= N^{ND}(N^{CS}, N^{HA}, N_{12}, N^{NM}) \\ N^{SV} &= N^{SV}(N^{HR}, N^{HS}, N^{TR}, N^{MD}, N^{SM}) \end{split}$	Energy Food agg. Non-durables Services agg.
$N^{FL} = N^{FL}(N_7, N_8)$ $N^{CS} = N^{CS}(N_4, N_5)$ $N^{HA} = N^{HA}(N_{10}, N_{11})$ $N^{NM} = N^{NM}(N_{13}, N_{14}, N_{15}, N_{16})$	Fuel and wood Clothing and shoes Household articles Miscellaneous non-durables
$N^{HR} = N^{HR}(N_{17}, N_{34})$	Rental housing

$$N^{HS} = N^{HS}(N_{20}, N_{21}, N_{22}, N_{23})$$
Household services $N^{TR} = N^{TR}(N_{24}, N_{25})$ Transportation $N^{MD} = N^{MD}(N_{26}, N_{27})$ Medical $N^{SM} = N^{SM}(N_{28}, N^{BS}, N^{RS}, N_{32})$ Miscellaneous services $N^{BS} = N^{BS}(N_{29}, N_{30})$ Business services $N^{RS} = N^{RS}(N_{31}, N_{33})$ Recreation

subscripts
$$\varepsilon I_{PCE}$$

Dual of **top** (m=1) tier consumption demands CC=CC(...) :

$$\ln V_{k} = \alpha^{H1} \ln P^{H1} + \frac{1}{2} \ln P^{H1} B^{H} \ln P^{H1} + (1 - \ln P^{H1} B_{l}) \ln M_{k} + \ln P^{H1} B_{pA} A_{k}$$
(A.1.17)

$$\ln P^{H1} = (\ln PN^{EN}, \ln PN^{FD}, PN^{ND}, PN^{K}, PN^{SV})$$
 $k \in I_{POP}$

$$\ln PCC = \iota' B^H \ln P^{H_1} \ln \frac{PCC.CC}{N^{eq}} - \alpha^H \ln P^{H_1} + \frac{1}{2} \ln P^{H_1} B^H \ln P^{H_1}$$
(A.1.18)

$$SN^{TOP} = \left(\frac{PN^{EN}N^{EN}}{PCC.CC}, \frac{PN^{FD}N^{FD}}{PCC.CC}, \frac{PN^{ND}N^{ND}}{PCC.CC}, \frac{PN^{K}N^{K}}{PCC.CC}, \frac{PN^{SV}N^{SV}}{PCC.CC}\right)$$
(A.1.19)
$$= \frac{\alpha^{H} + B^{H}\ln P^{H1} - B^{H}\iota\xi^{d} + B_{pA}\xi^{L}}{-1 + \iota'B^{H}\ln P^{H1}}$$

Price dual of **lower** tiers consumption demands $N^m(...)$:

$$\ln PN^{m} = \alpha^{Hm} \ln P^{Hm} + \frac{1}{2} \ln P^{Hm} B^{Hm} \ln P^{Hm} \qquad m \varepsilon I_{CNODE}$$
(A.1.20)

$$\ln P^{Hm} \equiv (\ln PN_{m1}, \dots, \ln PN_{mi}, \dots, \ln PN_{m,im})' \qquad i \in I_{CNODEm}$$
(A.1.21)

$$SN^{m} = \begin{bmatrix} PN_{m1}N_{m1}/PN^{m}N^{m} \\ \cdots \\ PN_{m,im}N_{m,im}/PN^{m}N^{m} \end{bmatrix} = \alpha^{Hm} + B^{Hm} \ln PN^{Hm} \quad \begin{array}{c} m \ \varepsilon \ I_{CNODE} \\ mi \ \varepsilon \ I_{CNODEm} \end{array}$$
(A.1.22)

$$PN_{mi} \varepsilon \{PN_1, \dots, PN_{34}, PN^{EN}, \dots, PN^{RS}\}$$
$$N_{mi} \varepsilon \{N_1, \dots, N_{34}, N^{EN}, \dots, N^{RS}\}$$

$$PN_1N_1 = SN_1^{FD} * SN_2^{TOP} * PCC.CC$$
(A.1.23)

-203-

$$VN \equiv (PN_1N_1, \dots, PN_{34}N_{34}, PKD_CKD_C)'$$

$$PN = \mathbf{H}' PS^{C} \quad \text{where the components of } PS^{C}:$$
(A.1.24)

$$PS_{i}^{C} = (1 + tc_{i})PS_{i} \quad i \in I_{COM}$$
(A.1.25)

$$PS_{N}^{C} = (1 + tc_{N})PNCI_{C}$$

$$PS_{K}^{C} = (1 + tc_{K})PKD_{C}$$

$$PS_{L}^{C} = (1 + tc_{L})PLD_{C}$$

Converting from NIPA categories to IO categories:

$$VC = (PS_1C_1, \dots, PS_{35}C_{35}, \dots, PLD_CLD_C)'$$

$$= \mathbf{H} VN$$
(A.1.26)

$$C_{i} = VC_{i}/PS_{i} \qquad i \in I_{INP}$$

$$C^{P} \equiv (C_{1}, C_{2}, \dots, C_{35})'$$

$$C \equiv (C_{1}, \dots, C_{35}, NCI_{C}, KD_{C}, LD_{C})'$$
(A.1.27)

A.2 Producer model

NESTED STRUCTURE OF PRODUCTION		(A.2.1
$QI_j = QI^j(KD_j, LD_j, QP^{jE}, QP^{jM})$	Industry output	
$\begin{split} QP^{jE} &= QP^{E}(QP^{j}_{3}, QP^{j}_{4}, QP^{j}_{16}, QP^{j}_{30}, QP^{j}_{31}) \\ QP^{jM} &= QP^{M}(QP^{j}_{6}, QP^{jMA}, QP^{jME}, QP^{jMN}, QP^{jMS}) \end{split}$	Energy aggregate Material aggregate	
$\begin{split} QP^{jMA} &= QP^{AG}(QP_{1}^{j}, QP_{7}^{j}, QP_{8}^{j}, QP^{jTX}, QP^{jWP}) \\ QP^{jME} &= QP^{ME}(QP^{jFM}, QP^{jMC}, QP^{jEQ}) \\ QP^{jMN} &= QP^{MN}(QP_{5}^{j}, QP_{15}^{j}, QP_{17}^{j}, QP_{19}^{j}, QP_{27}^{j}) \\ QP^{jMS} &= QP^{MS}(QP_{28}^{j}, QP_{32}^{j}, QP_{33}^{j}, QP_{34}^{j}, QP^{jOS}) \end{split}$	Agriculture products Metallic agg. Non-metallic agg. Service agg.	
$\begin{aligned} QP^{jTX} &= QP^{TX} (QP_{9}^{j}, QP_{10}^{j}, QP_{18}^{j}) \\ QP^{jWP} &= QP^{WP} (QP_{11}^{j}, QP_{12}^{j}, QP_{13}^{j}, QP_{14}^{j}) \\ QP^{jFM} &= QP^{FM} (QP_{2}^{j}, QP_{20}^{j}, QP_{21}^{j}) \\ QP^{jMC} &= QP^{MC} (QP_{22}^{j}, QP_{23}^{j}) \\ QP^{jEQ} &= QP^{EQ} (QP_{24}^{j}, QP_{25}^{j}, QP_{26}^{j}) \\ QP^{jOS} &= QP^{OS} (QP_{29}^{j}, QP_{35}^{j}, QP_{NCI}^{j}) \end{aligned}$	Textile agg. Wood and paper agg. Primary metal agg. Machinery agg. Equipment agg. Miscellaneous services	

Price dual of **top** tier of production functions $QI_j = QI(...)$:

$$PO_{j} = PO^{j} (PKD_{j}, PLD_{j}, PP^{jE}, PP^{jM}) \qquad j \varepsilon I_{IND}$$

$$\ln PO_{j} = \alpha_{0}^{j} + \alpha^{Pj'} \ln P^{Pj0} + \frac{1}{2} \ln P^{Pj0'} B^{Pj} \ln P^{Pj0} + \ln P^{Pj0'} B^{j}_{pt} g(t) \qquad (A.2.2)$$

$$+ \alpha_{t}^{j} g(t) + \frac{1}{2} \beta_{tt}^{j} g(t)^{2} + \ln \lambda_{j}$$

where $g(t) = \frac{1}{1 + \exp(-\mu^{j}(t - \tau^{j}))}$.

and $\ln P^{Pj0} \equiv (\ln PKD_j, \ln PLD_j, \ln PP^{jEN}, \ln PP^{jM})'$

$$SP^{jTOP} = \begin{bmatrix} PKD_{j}KD_{j}/PO_{j}QI_{j} \\ .. \\ PP^{jM}QP^{jM}/PO_{j}QI_{j} \end{bmatrix} = \alpha^{Pj} + B^{Pj}\ln P^{Pj0} + B^{j}_{pt}g(t)$$
(A.2.3)

Price dual of **lower** tiers of production functions, $QP^{jm} = QP(...)$:

$$\ln PP^{jm} = \alpha_0^{jm} + \alpha^{Pjm'} \ln P^{Pjm} + \frac{1}{2} \ln P^{Pjm'} B^{Pjm} \ln P^{Pjm} \qquad m \varepsilon I_{PNODE}$$
(A.2.4)

$$\ln P^{p_{jm}} \equiv (\ln PP_{m1}^{j}, ..., \ln PP_{mi}^{j}, ..., \ln PP_{m,im}^{j})' \qquad i \varepsilon I_{PNODEm}$$

$$SP^{jm} = \begin{bmatrix} PP_{m1}^{j} QP_{m1}^{j} / PP^{jm} QP^{jm} \\ ... \\ PP_{m,im}^{j} QP_{m,im}^{j} / PP^{jm} QP^{jm} \end{bmatrix} = \alpha^{P_{jm}} + B^{P_{jm}} \ln P^{P_{jm}} \qquad (A.2.5)$$

$$PP_{mi}^{j} \varepsilon \{PS_{1}, ..., PS_{35}, PNCI_{j}, PP^{jMA}, ..., PP^{jOS}\}$$

$$QP_{mi}^{j} \varepsilon \{QP_{1}^{j}, ..., QP_{35}^{j}, NCI_{j}, QP^{jMA}, ..., QP^{jOS}\}$$

$$VP^{j} \equiv (PS_{1}QP_{1}^{j}, ..., PS_{35}QP_{35}^{j}, PNCI_{j}NCI_{j}, PKD_{j}KD_{j}, PLD_{j}LD_{j})'$$

$$VQI \equiv (PO_{1}QI_{1}, ..., PO_{35}QI_{35})'$$

Taxes. (Net vs. Gross Output)

$$PI_j = (1 + tt_j + tx_j^{\nu})PO_j + tu_j + tx_j^{\nu} \qquad j \in I_{IND}$$
(A.2.6)

$$VQI^{tt} \equiv (PI_1QI_1, \dots, PI_{35}QI_{35})'$$
$$= Diag(\iota + tt^{full}) VQI$$

Commodities from industry outputs: $PC = \mathbf{M}' PI$ (A.2.7)

$$VQC \equiv (PC_1QC_1, \dots, PC_{35}QC_{35})'$$

$$= \mathbf{M}' VQI''$$
(A.2.8)

$$QC_i = VQC_i/PC_i$$
 i εI_{COM} (A.2.9)

-206-

$$A_j \equiv (A_{1j}, A_{2j}, \dots, A_{35j})' \qquad j \varepsilon I_{IND}$$
 (A.2.11)

$$\mathbf{A} = [A_1, A_2, \dots, A_{35}] \tag{A.2.12}$$

$$PNCI_{j}NCI_{j} = SP_{3}^{jOS} * SP_{5}^{jMS} * SP_{5}^{jM} * SP_{4}^{jTOP} * PO_{j} * QI_{j}$$
(A.2.13)

$$PKD_jKD_j = SP_1^{jTOP} * PO_j * QI_j$$
(A.2.14)

$$PLD_j LD_j = SP_2^{jTOP} * PO_j * QI_j$$
(A.2.15)

(A.2.16)

$$KD_4 = \overline{KD}_4$$
 (oil sector)

A.3 Capital and Investment

The Bank as owner of economy aggregate capital.

Max
$$\sum_{t=u}^{\infty} \frac{(1-tk)(PKD_t\psi^K K_{t-1} - tpPK_{t-1}K_{t-1}) - (1-\theta)PII_t I_t^a}{\prod_{s=u}^t 1 + r_s}$$
(A.3.1)

subject to

$$K_t = (1 - \delta)K_{t-1} + \psi^I I_t^a$$
(A.3.2)

Hamiltonian :

$$\frac{(1-tk)(PKD_t\psi^K K_{t-1} - tpPK_{t-1}K_{t-1}) - (1-\theta)PII_t I_t^a}{\prod_{s=u}^t 1 + r_s} + \frac{\lambda_t}{\prod_{s=u}^t 1 + r_s} ((1-\delta)K_{t-1} + \psi^I I_t^a - K_t)$$
(A.3.3)

Euler equation :

$$(1+r_t)\frac{PII_{t-1}}{\psi_{t-1}^I} = \frac{1-tk}{1-\theta} \left(PKD_t\psi_t^K - tp \ PK_{t-1}\right) + (1-\delta)\frac{PII_t}{\psi_t^I}$$
(A.3.4)

Aggregation relationships.

$$PK_t = \psi_t^{PK} PII_t(1-\theta) \tag{A.3.5}$$

$$KD_t = \psi_t^K K_{t-1} \tag{A.3.6}$$

$$\psi_t^I = \alpha^I + \frac{\beta^I}{1 + \exp(-\mu^I (t - \tau^I))}$$
(A.3.7)

$$\psi_t^{PK} = \alpha^{PK} + \frac{\beta^{PK}}{1 + \exp(-\mu^{PK}(t - \tau^{PK}))}$$
(A.3.8)

$$VII = PII. I^a \tag{A.3.9}$$

-209-

NESTED STRUCTURE OF INVESTMENT

$$I^{a} = I^{a}(I^{fixed}, I^{inventory})$$

$$I^{fixed} = I^{FX}(I^{long}, I^{short})$$

$$I^{inventory} = I^{IY}$$

$$I^{long} = I^{LG}(I_6, I_{33})$$

$$I^{short} = I^{SH}(I^{vehicles}, I^{machinery}, I^{services})$$

 $I^{vehicles} = I^{VE}(I_{24}, I_{25})$ $I^{machinery} = I^{MC}(I_{22}, I_{23}, I^{other-m})$ $I^{services} = I^{SV}(I_{32}, I^{other-s})$

 $I^{other-m} = I^{MO}(I^{gadgets}, I^{wood}, I^{nonmetal}, I^{misc})$ $I^{other-s} = I^{SO}(I_{34}, I^{movers})$

 $I^{gadgets} = I^{GD}(I_{20}, I_{21}, I_{26})$ $I^{wood} = I^{WD}(I_{11}, I_{12})$ $I^{nonmetal} = I^{MN}(I_{15}, I_{17}, I_{19}, I_{27})$ $I^{misc} = I^{OO}(I^{textile}, I_{13}, I^{mining})$ $I^{mover} = I^{TC}(I_{28}, I_{29})$

 $I^{textile} = I^{TX}(I_9, I_{10}, I_{18}, I_{NCI})$ $I^{mining} = I^{MG}(I_2, I_4)$

Aggregate investment

Fixed investment agg. Change in business inventories Long-lived investment agg. Short-lived investment agg.

Vehicle agg. Machinery agg. Services agg.

Other machinery agg. Other services agg.

Metals and instruments agg. Wood products agg. Nonmetallic products agg. Miscellaneous agg. Transportation and Communications agg.

Textile agg. Minerals agg.

At top tier of investment functions I=I(...) :

 $VII = VII^{fixed} + VII^{invy}$ (A.3.11)

$$\frac{VII^{invy}}{VII} = \alpha^{IY} \tag{A.3.12}$$

Price dual of investment demand tiers $I^m = I^m()$:		
$VI_i^{invy} = \alpha_i^{IY} VII^{invy}$	ieI _{COM}	(A.3.13)

$$\ln PII^{m} = \alpha^{\text{Im}} \ln P^{\text{Im}} + \frac{1}{2} \ln P^{\text{Im}} B^{\text{Im}} \ln P^{\text{Im}} + \log \lambda^{I} \qquad m \varepsilon I_{INV}$$

$$\ln P^{\text{Im}} \equiv (\ln PII_{m1}, \dots, \ln PII_{mi}, \dots, \ln PII_{m,im})' \qquad i \varepsilon I_{INVm}$$
(A.3.14)

$$SI^{m} = \begin{bmatrix} PII_{m1}I_{m1}^{f}/PII^{m}I^{m} \\ \cdots \\ PII_{m,im}I_{m,im}^{f}/PII^{m}I^{m} \end{bmatrix} = \alpha^{\mathrm{Im}} + B^{\mathrm{Im}}\ln PII^{\mathrm{Im}} \qquad \begin{array}{c} m \ \varepsilon \ I_{INV} \\ mi \ \varepsilon \ I_{INVm} \end{array}$$
(A.3.15)

$$PII_{mi} \ \varepsilon \ \{PS_1, \dots, PS_{35}, PII^{fixed}, \dots, PII^{mining}\}$$
$$I_{mi} \ \varepsilon \ \{I_1^f, \dots, I_{35}^f, I^{fixed}, \dots, I^{mining}\}$$

Values of individual commodities making up aggregate investment demand:

$$VI \equiv (PS_1I_1, ..., PS_{35}I_{35}, PNCI_INCI_I)'$$
$$I^P \equiv (I_1, ..., I_{35})'$$
$$I \equiv (I_1, ..., I_{35}, NCI_I)'$$

The Bank as owner of disaggregated capital

Capital services

$$KD = KD_1 + \dots + KD_{35} + KD_h \tag{A.3.18}$$

$$KD_j = KD^j (KD_{jc}, KD_{jn})$$
 corporate, noncorporate $j \varepsilon I_{IND}$ (A.3.19)

$$KD_{jc} = KD(KD_{jcs}, KD_{jcl})$$
 short, long – lived assets $c = c, n$ (A.3.20)

$$VKD_{jcst} = PKD_{jcst} KD_{jcst}$$
 value of capital services (A.3.21)

* Industry capital

$$\ln PKD_{j} = \alpha_{KD0}^{j} + \alpha_{KD}^{j} \ln P + \frac{1}{2} \ln P'B_{KD}^{j} \ln P, \qquad \ln P = (\ln PKD_{jc}, \ln PKD_{jn})'$$
(A.3.22)

$$\begin{bmatrix} PKD_{jc}KD_{jc}/VKD_{j} \\ PKD_{jn}KD_{jn}/VKD_{j} \end{bmatrix} = \alpha_{KD}^{j} + B \ln P, \qquad (A.3.23)$$

* Corporate capital

$$\ln PKD_{jc} = \alpha_{KD0}^{c} + \alpha_{KD}^{jc} \ln P + \frac{1}{2} \ln P' B_{KD}^{jc} \ln P \qquad \ln P = (\ln PKD_{jcs}, \ln PKD_{jcl})' \qquad (A.3.24)$$

$$\begin{bmatrix} PKD_{jcs}KD_{jcs}/VCD_{j} \\ PKD_{jcl}KD_{jcl}/VQD_{j} \end{bmatrix} = \alpha_{KD}^{jc} + B_{KD}^{jc} \ln P,$$
(A.3.25)

$$PKD_{jcst} = \left[\frac{1 - ITC_{cs} - t_c z_{cs}}{1 - t_c} (r_{jc} + (1 + \pi)\delta_{cs}) + \gamma_c^p t_c^p\right] PK_{t-1} \qquad s = s, l$$
(A.3.26)

NOTE: We do not index *PK* by *PK*_{*jcs*} or *PK*_{*jns*}, but have a common price of capital goods for all buyers. Similarly, π is common to all equations.

$$r_{jc} = (1 - \beta_{jc})r_{c}^{equ} + \beta_{jc}(1 - (1 - \gamma_{c}^{i})t_{c})i_{t} - \pi$$
(A.3.27)
where $r_{c}^{equ} = \frac{\rho - \pi [1 - (1 - \gamma_{c}^{g})t_{c}^{g}]}{1 - t_{c}^{earn}} (1 - \alpha^{DIV}\gamma_{c}^{d}t_{c})$
where $t_{c}^{earn} = \alpha^{DIV}t_{c}^{e} + (1 - \alpha^{DIV})t_{c}^{g}$

* Noncorporate capital

$$\ln PKD_{jn} = \alpha_{KD0}^{jn} + \alpha_{KD}^{jn} \ln P + \frac{1}{2} \ln P' B_{KD}^{jn} \ln P, \qquad \ln P = (\ln PKD_{jns}, \ln PKD_{jnl})'$$
(A.3.28)

$$PKD_{jns} = \left[\frac{1 - ITC_{ns} - t_n^e z_{ns}}{1 - t_n^e} (r_{jn} + (1 + \pi)\delta_{ns}) + \gamma_n t_n^p\right] PK_{t-1} \quad s = s, l$$
(A.3.29)

$$\begin{bmatrix} PKD_{ns}KD_{ns}/VND_{j} \\ PKD_{nl}KD_{nl}/VND_{j} \end{bmatrix} = \alpha_{KD}^{jn} + B_{KD}^{jn} \ln P,$$
(A.3.30)

$$r_{jn} = (1 - \beta_{jn})(\rho - \pi [1 - (1 - \gamma_n^g)t_n^g]) + \beta_{jn}(1 - (1 - \gamma_n^i)t_n^e)i_t - \pi$$
(A.3.31)

* Household capital

$$PKD_{hs} = [r_h + (1+\pi)\delta_{hs} + (1-\gamma_h^p)t_{hs}^p] PK_{t-1} \qquad s = s, l$$
(A.3.32)

$$\ln PKD_{h} = \alpha_{KD0}^{h} + \alpha_{KD}^{h} \ln P + \frac{1}{2} \ln P'B_{KD}^{h} \ln P \qquad \ln P = (\ln PKD_{hs}, \ln PKD_{hl})' \qquad (A.3.33)$$

$$\begin{bmatrix} PKD_{hs}KD_{hs}/VHD\\ PKD_{hl}KD_{hl}/VHD \end{bmatrix} = \alpha_{KD}^{h} + B_{KD}^{h} \ln P, \qquad (A.3.34)$$

$$r_{h} = (1 - \beta_{h})r_{h}^{equ} + \beta_{h}(1 - (1 - \gamma_{h}^{i})t_{h}^{e}(1 - dhi))i_{t} - \pi$$
(A.3.35)
where $r_{h}^{equ} = \rho - \pi [1 - (1 - \gamma_{h}^{g})t_{h}^{g}]$

* Short, long

In data construction, short and long capital is aggregated over the corresponding components from the list of 51 BEA assets classes; $K_{jcst} = \sum_{i} K_{ijcst}$ and $K_{jclt} = \sum_{i} K_{ijclt}$ for j = 1, ...35 and c = c, l, h. In this version of the model we do not keep track of $K_{ijcst} = (1 - \delta_i)K_{ijcst-1} + I_{ijcst}$. In other words there is no effort to link the investment column of the IO table (A.3.17) and I_{ijcst} .

$$i_t = constant * PKD_t - equity premium$$
 (A.3.36)

$$t_c = t_c^f (1 - t_c^s) + t_c^s \tag{A.3.37}$$

Value of Depreciation deductions and property tax

$$DC_{j} = \sum_{s,l} z_{cs} (r_{c} + (1 + \pi)\delta_{cs}) (1 - ITC_{cs} - t_{c} z_{cs}) PK_{t-1} K_{jcst-1}$$
(A.3.38)

$$DN_{j} = \sum_{s,l} z_{ns}(r_{n} + (1+\pi)\delta_{ns}) (1 - ITC_{ns} - t_{n}z_{ns}) PK_{t-1}K_{jnst-1}$$
(A.3.39)

$$R_{jc}^{p} = t_{c}^{p} (1 - ITC_{cs} - t_{c} z_{cs}) PK_{t-1} K_{jcst-1} \qquad c = c, n \quad j = 1 \varepsilon I_{IND}$$
(A.3.40)

Corporate income tax base; interest part, equity part

$$IC_{cj} = \beta_{jc} \sum_{s,l} (1 - ITC_{cs} - t_c z_{cs}) PK_{t-1} K_{jcst-1} i_t \qquad c = c, n \quad j = 1 \varepsilon I_{IND}$$
(A.3.41)

$$BQ_{j} = PKD_{j}KD_{j} - DC_{j} - IC_{cj} - R_{jc}^{p}$$
(A.3.42)

$$R_{jc}^{f} = t_{c}^{f} (1 - t_{c}^{s}) B Q_{j}$$
(A.3.43)

$$R_{jc}^s = t_c^s BQ_j \tag{A.3.44}$$

Noncorporate income tax base

$$BN_{j} = PKD_{jn}KD_{jn} - DN_{j} - IC_{nj} - R_{jn}^{p}$$
(A.3.44)

Individual capital income tax base

$$BE_{j} + BD_{j} = BQ_{j} - t_{c}BQ_{j} + BN_{j} + IC_{cj} + IC_{nj}$$
(A.3.45)

Individual capital income tax revenue from industry j

$$R_{j}^{lf} = [\alpha^{DIV} t_{c}^{ef} + (1 - \alpha^{DIV}) t_{c}^{gf}] (BQ_{j} - R_{jc}^{f}) + t_{n}^{ef} BN_{j} + t_{n}^{ef} (IC_{cj} + IC_{nj})$$
(A.3.46)

$$R_{j}^{Is} = [\alpha^{DIV} t_{c}^{es} + (1 - \alpha^{DIV}) t_{c}^{gs}] (BQ_{j} - R_{jc}^{s}) + t_{n}^{es} BN_{j} + t_{n}^{es} (IC_{cj} + IC_{nj})$$
(A.3.47)

$$cash_flow_j = BE_j + BD_j - R_j^{lf} - R_j^{ls} + DC_j + DN_j$$
 (A.3.48)

Household property taxes

$$R_{h}^{p} = t_{h}^{p} P K_{t-1} \left(K_{hst-1} + K_{hlt-1} \right)$$
(A.3.49)

$$debt_{h} = \beta_{h} PK_{t-1} \left(K_{hst-1} + K_{hlt-1} \right)$$
(A.3.50)

$$BH = 0 - R_j^p - debt_h i_t \tag{A.3.51}$$

* Revenue summed over all industries: Property; Capital income; Wealth taxes

$$RP = \sum_{j}^{NIND} R_{jc}^{p} + R_{jn}^{p} + R_{h}^{p}$$
(A.3.52)

$$RK^{f} = \sum_{j}^{NIND} R_{jc}^{f} + R_{j}^{If} + BH t_{h}^{ef}$$
(A.3.53)

$$+ tk^{f}(rBG + rBF)/(1 - tk) + tk^{f}(GINT^{rec} + YROW^{rec}) + (1 - tk^{f})PKD_{35}KD_{35}$$

$$RK^{s} = \sum_{j}^{MND} R_{jc}^{s} + R_{j}^{Is} + BH t_{h}^{es}$$
(A.3.54)

+
$$tk^{s}(rBG + rBF)/(1 - tk) + tk^{s}(GINT^{rec} + YROW^{rec}) + (1 - tk^{s})PKD_{35}KD_{35}$$

$$RW^{f} = tw^{f} \left[\sum_{j}^{NIND} \sum_{s,l} (1 - ITC_{cs} - t_{c}z_{cs})PK_{t-1}K_{jcst-1} + (1 - ITC_{ns} - t_{n}z_{ns})PK_{t-1}K_{jnst-1} + BG_{t} + BF_{t}\right] \quad f = f, s$$
(A.3.55)

$$Y^{I} = \sum_{j}^{NIND} IC_{cj} + IC_{nj} + debt_{h} i_{t}$$
(A.3.56)

A.4 The Government and pollution externalities

Tax rates.

$$tc_i = tc + tc^g \qquad i\varepsilon I_{COM} \tag{A.4.1}$$

$$tc_N = tc + tc^N \tag{A.4.2}$$

$$tc_K = tc + tc^K \tag{A.4.3}$$

$$tc_L = tc + tc^L \tag{A.4.4}$$

$$tx_i^{\nu} = \sum_{j=1} tx_j^{X\nu} XP_{ij} \qquad i\varepsilon I_{IND} \ j\varepsilon I_{EXT} \qquad (A.4.5)$$

$$tx_i^u = \sum_{j=1} tx_j^{X_u} XP_{ij}$$
 (A.4.6)

$$tx_i^{rv} = \sum_{j=1} tx_j^{Xv} XM_{ij}$$
(A.4.7)

$$tx_{i}^{ru} = \sum_{j=1} tx_{j}^{Xu} XM_{ij}$$
(A.4.8)

$$tt_i^{full} = tt_i + tx_i^{\nu} + \frac{tu_i + tx_i^{u}}{PO_i}$$
(A.4.9)

$$tl^{0} = \sum_{j} PLD_{j}LD_{j} \left(1 - \frac{tl^{a}}{tl^{m}}\right)$$
(A.4.10)

$$tt_j = tt_j^f + tt_j^s \tag{A.4.11}$$

$$tl^m = tl^{mf} + tl^{ms} \tag{A.4.12}$$

$$tl^a = tl^{af} + tl^{as} \tag{A.4.13}$$

$$t_c^e = t_c^{ef} + t_c^{es}$$
 $c = c, n, h$ (A.4.14)

$$t_g^e = t_g^{ef} + t_g^{es}$$
 $c = c, n, h$ (A.4.15)

Stock-flow relations.

$$BG_t^f = BG_{t-1}^f + \Delta G^f + GFI + \Delta P_t^{BGF} + BG^{fdisc}$$
(A.4.16)

$$BG_t^s = BG_{t-1}^s + \Delta G^s \tag{A.4.17}$$

$$BG_t * = BG_{t-1} * - GFI - \Delta P_t^{BG*}$$
(A.4.18)

Federal Government revenue and expenditures on goods.

$$revenue^{f} = R_SALES^{f} + R_CON + R_TARIFF + R_K^{f} + R_ITC + R_L^{f}$$
(A.4.18)

$$+ R_W^f + TAXN^f + TAXSS + R_UNIT + R_EXT + TLUMP$$

$$R_SALES^{f} = \sum_{j} tt_{j}^{f} PO_{j}QI_{j}$$
(a)

$$R_CON = \sum_{I_{COM}} tc_i PS_i C_i + tc_K \frac{KD_H}{KD} PII_t I_t^a$$
(b)

$$R_TARIFF = \sum_{i} tr_i PM_i M_i$$
(c)
$$R_K^{f} \text{ is from } (A \ 2 \ 5 \ 2)$$

$$R_K^{J} \text{ is from (A.3.53)}$$

$$R_K^{J} = -APILL^{a}$$

$$R_{ITC} = -\theta P I I_t I_t^a$$
 (e)

$$R_L f = t l^{af} w LS / (1 - t l^m)$$
(f)

$$R_W^f = tw^f (PK.K + BG + BF)????A.3.55$$
(g)

$$R_UNIT = \sum_{j} t u_{j} Q I_{j}$$
(h)

$$R_EXT = \sum_{j} tx_{j}^{v} (PI_{j}QI_{j} + PM_{j}M_{j}) + \sum_{j} tx_{j}^{u} (QI_{j} + M_{j})$$
(i)

 $VGG^{f} = \Delta G^{f} + revenue^{f}$

$$-r\frac{BG^{f}}{1-tk} - GF_INT^{rec} - GINTR - GF_TRAN - GR - \theta PII_{t}I_{t}^{a}$$
(A.4.18)

State&Local Government revenue and expenditures on goods.

$$revenue^{s} = R_SALES^{s} + R_K^{s} + R_L^{s} + R_P$$
(A.4.19)

$$+R_W^s + TAXN^s$$

$$R_SALES^s = \sum_j tt_j^s PO_j QI_j$$
(a)

$$R_{K}^{s}$$
 is from (A.3.54)

$$R_L^s = tl^{as} w LS/(1 - tl^m)$$
(b)

$$R_W^s = tw^s (PK. K + BG + BF)??????$$
 (c)

$$R_P = t_c^p P I I_t K_c + t_n^p P I I_t K_n + t_h^p P I I_t K_h$$
(d)

 $VGG^s = \Delta G^s + revenue^s$

$$-r\frac{BG^{s}}{1-tk} - GS_INT^{rec} - GS_TRAN$$
(A.4.20)

Total Government

$$GTRAN = GF_TRAN + GS_TRAN$$
(A.4.21)

$$GINT^{rec} = GF_INT^{rec} + GS_INT^{rec}$$
(A.4.22)

$$VGG = VGG^f + VGG^s$$
(A.4.23)

$$TAUN = TAUN f_{c} TAUN f_{c} TAUN f_{c}$$
(A.4.22)

$$TAXN = TAXN^{f} + TAXN^{s} \tag{A.4.23}$$

$$VG_i = \alpha_i^G VGG$$
 $i \varepsilon I_{INP}$ (A.4.24)

$$G_i = VG_i / PS_i \tag{A.4.25}$$

$$VG \equiv (PS_1G_1, \dots, PS_{35}G_{35})'$$
$$G^P \equiv (G_1, \dots, G_{35})'$$
$$G \equiv (G_1, \dots, G_{35}, NCI_G, KD_G, LD_G)'$$

$$GFI = -GINTR - GR - GM \tag{A.4.26}$$

$$GINT^{rec} = GINT - \frac{r}{1 - tk} BG_{t-1}$$
(A.4.27)

Externalities

$$EXT_{x} = \sum_{j} XP_{jx}QI_{j} + \sum_{i} XM_{ix}M_{i} \qquad x \varepsilon I_{EXT}$$
(A.4.28)

A.5 The Rest-of-the-World

Non-competitive imports.

$$PNCI_{j} = e (1 + tr_{j}^{n}) PNCI_{j}^{*}$$
 $j = 1, ..., 35, C, I, G$ (A.5.1)

Competitive imports and domestic output making up total supply:

$$QS_i = QS(QC_i, M_i) \qquad i\varepsilon I_{COM}$$
(A.5.2)

with the price dual:

$$\ln PS_{i} = (\alpha_{0}^{Mi} + \frac{\beta_{0}^{Mi}}{1 + e^{-\mu(t-\tau)}}) \ln P^{Mi} + \frac{1}{2} \ln P^{Mi'} B^{Mi} \ln P^{Mi}$$

$$\ln P^{Mi} \equiv (\ln PC_{i}, \ln PM_{i})'$$
(A.5.3)

$$PM_i = e\left(1 + tr_i + tx_i^{rv}\right)PM_i^* + tx_i^{ru} \qquad i\varepsilon I_{COM}$$
(A.5.4)

$$SD^{i} \equiv \begin{bmatrix} PC_{i}QC_{i}/PS_{i}QS_{i} \\ PM_{i}M_{i}/PS_{i}QS_{i} \end{bmatrix} = \alpha_{0}^{Mi} + \frac{\beta_{0}^{Mi}}{1 + \exp(-\mu^{Mi}(t - \tau^{Mi}))} + B^{Mi}\ln P^{Mi}$$
(A.5.5)

$$PS_iQS_i = PC_iQC_i + PM_iM_i \qquad i\varepsilon I_{COM}$$
(A.5.6)

$$VQS \equiv (PS_1QS_1, \dots, PS_{35}QS_{35})'$$

$$VM \equiv (PM_1M_1, \dots, PM_{35}M_{35})'$$

$$SM \equiv (SD_2^1, SD_2^2, \dots, SD_2^{35})'$$

$$M \equiv (M_1, M_2, \dots, M_{35})'$$
(A.5.7)

Exports.

$$X_{i} = X_{i}(Y^{*}, (1 + tr_{i}^{*})PC_{i}/eP_{i}^{*}) \qquad i\varepsilon I_{COM}$$

$$= EX_{i0}(Y^{*}) \left(\frac{(1 + tr_{i}^{*})PC_{i}}{e}\right)^{\eta_{i}} + X_{i}^{tr}$$
(A.5.9)

$$X_i^{tr} = \frac{PCC. XR}{\sum PC_i C_i} C_i \tag{A.5.10}$$

$$EX_{it} = \alpha_i^x + \lambda_i^x \ln Y_t *$$
(A.5.11)

$$X \equiv (X_1, \dots, X_{35})'$$

$$VX \equiv (PC_1 X_1, \dots, PC_{35} X_{35})'$$
(A.5.12)

Current account and net foreign assets.

$$CA = \sum_{i} PC_{i}X_{i} + \frac{r}{1 - tk}BF + YROW^{rec} - \sum_{i} PM_{i}M_{i} - \sum_{j} PNCI_{j}NCI_{j}$$
(A.5.13)
$$-\bar{i}BG^{*} - GR - CR$$

$$BF_t = BF_{t-1} + CA_t - GFI + BF^{disc} + \Delta P^{BF}$$
(A.5.14)

$$YROW^{rec} = YROW - \frac{r}{1 - tk} BF$$
(A.5.15)

A.6 Markets

Final demands.

$$VFD_{i} = PS_{i} (C_{i}^{P} + I_{i}^{P} + G_{i}^{P}) + PC_{i}X_{i} \qquad i\varepsilon I_{COM}$$

$$VFD \equiv (VFD_{1}, \dots, VFD_{35})'$$

$$= VC + VI + VG + VX$$
(A.6.1)

Supply equal demand for commodities.

$$PS_{i}QS_{i} = \sum_{j=1}^{35} PS_{i}QP_{i}^{j} + VFD_{i}$$
(A.6.2)

$$VQS = \mathbf{A} VQI + VFD \tag{A.6.3}$$

$$VQC = Diag(SM)VQS$$
 $VQS = Diag(1/SM)VQC$ (A.6.4)

$$Diag(1/SM) VQC - \mathbf{A} VQI = VFD$$

$$Diag(1/SM)\mathbf{M}' Diag(\iota + tt^{full}) VQI - \mathbf{A} VQI = VFD$$

$$[Diag(1/SM)\mathbf{M}' Diag(\iota + tt^{full}) - \mathbf{A}] VQI = VFD$$
(A.6.5)

Saving-investment balance.

$$VII = S - (BG_t - BG_{t-1}) - (BF_t - BF_{t-1})$$
(A.6.6)

$$PKD_{j} = \psi_{j}^{K} PKD \qquad j\varepsilon I_{BUY}$$
(A.6.7)

$$\sum_{j=1}^{C} PKD_j KD_j = PKD. KD$$
(A.6.8)

$$\sum_{j=1}^{C} \psi_{j}^{K} K D_{j} = K D = \psi^{K} K_{t-1}$$
(A.6.9)

Demand equal supply of labor.

$$PLD_{j} = \psi_{j}^{L} \frac{w}{(1 - tl^{m})} \qquad \qquad j \in I_{BUY}$$
(A.6.10)

$$w^{LE} = \psi_C^L w \tag{A.6.11}$$

$$(1 - tl^m) \sum PLD_j LD_j = w LS = w (LH - \psi_C^L LEIS)$$
(A.6.12)

$$\sum_{j=1}^{G} \psi_j^L L D_j = LS$$

(A.6.13)

$Prices_T = Prices_{T-1}$	(A.7.1)
$Quantities_T = Quantities_{T-1}$	(A.7.2)
$\Delta G_T = 0$	(A.7.3)
$CA_T = 0$	(A.7.4)
$r_t = \rho$	(A.7.5)
$\psi^I I_T^a = \delta K^T$	(A.7.6)

A.8 GLOSSARY

A.8.1 Values and other variables:

Α		IO Use matrix; the use of commodities by each industry
	jeI _{IND}	Columns of A
$egin{array}{c} A_j \ A_{ij} \end{array}$	jει _{IND} iεI _{COM} jεI _{IND}	Share of input i in producing output j
BF	ICICOM JEIIND	Net US private sector claims on rest-of-world
BF ^{disc}		Stock-flow discrepancy in the US external accounts
BG		Government debt to domestic households
BG^{f}	$f = f_{\alpha}$	
	f = f, s	Ditto; federal, state&local
BG^{disc}		Stock-flow discrepancy in the US government accounts
BG *		Government debt to rest-of-world
CA		Current account surplus of the US
CR		Households transfer to rest-of-world
cash_flow	jeI _{IND}	Capital income after taxes from business
EX_{it}		Exogenous projected exports.
GFI		Government net foreign investment
GINT		Government interest payments on public debt to households
		(including social insurance funds.)
Gf_INT	f = F, S	Ditto; federal, state&local
GINT ^{rec}		Arbitrage adjustment for interest income on
		government bonds
Gf_INT^{rec}	f = F, S	Ditto; federal, state&local
GINTR		Government interest payments to rest-of-world
GM		Government net imports
GR		Government transfers to rest-of-world
GTRAN		Government transfers to households
M_k		Expenditures by household k
MF		Full expenditures (including leisure)
R_{j}^{I}		Individual capital income tax revunue from industry j
SD^i	ieI _{COM}	Shares of domestic output, imports in total supply of i
SF		Vector of shares of commodities and leisure in
		full consumption
SI^m	$m \varepsilon I_{INV}$	Shares of investment at node m
SM		Vector of shares of imports in total supply.
SN^m	$m \varepsilon I_{CNODE}$	Shares of consumption at node m
SP^{jm}	jeI _{IND} meI _{PNODE}	Shares of production at node m of industry j
S		Savings
TLUMP		Lump sum tax
TAXN		Non-tax receipts of the government
$TAXN^{f}$	f = f, s	Ditto; federal, state&local
$TAXSS^{f}$	f = f, s	Govt investment income of soc ins funds
VC	J J ? **	Vector of values of household purchases of commodities
VFD		Vector of values of final demand for commodities
VG		Vector of values of government demand for commodities
, 0		version of values of government demand for commodities

VGG		Value of government purchases
VII		Value of domestic private investment
VI		Vector of values of investment inputs
VN		Vector of values of household purchases of NIPA
		commodities
VP^{j}	jeI _{IND}	Vector of values of inputs into industry j
VQC		Vector of values of domestic commodity output
VQI		Vector of values (to producer) of domestic industry output
VQI^{tt}		Vector of values of domestic industry output inclusive of
		sales tax
VQS		Vector of values of total commodity supply
VX		Vector of values of commodity exports
W		Tangible wealth of private sector (households)
WF		Full wealth of private sector (households)
XR		Travel exports: Expenditures by foreign tourists in U.S.
Y		Income
YF		Full income (including imputations on leisure)
YROW		Net income from rest-of-world
YROW ^{rec}		Arbitrage adjustment for income from rest-of-world
Y *		Exogenous projected rest-of-world income
Y^{I}		Interest from debt portion of claims on all capital
ΔG		Government deficit
ΔG^{f}	f = f, s	Government deficit; federal, state&local
ΔP^{BF}		Capital gains on net foreign assets
ΔP^{BG}		Capital gains on government bonds
ΔP^{BG*}		Capital gains on government liabilities to ROW
ψ^{I}		Aggregation constant of investment goods
ψ^{PK}		Aggregation constant of price of capital

A.8.2 Quantities:

CC		Aggregate consumption (commodities)
C^P		Vector of quantities of consumption of produced commodities.
С		Vector of consumption, commodities & non-produced goods.
C_i	$i \varepsilon I_{INP}$	Consumption of IO commodity i
EXT_x	$x \varepsilon I_{EXT}$	Quantity of Externality of type x
F		Full consumption (commodities and leisure)
G^P		Vector of government purchases of commodities.
G		Vector of government purchases, commodities and
		non-produced goods.
G_i	$i \varepsilon I_{NCOM}$	Government purchases of commodity i
I^a		Aggregate investment in domestic capital stock
Ι		Vector of commodities used in aggregate investment.
I^m	$m \varepsilon I_{INV}$	Investment aggregate m

I_i^f	ieI _{NCOM}	Investment of commodity i in fixed investment
	ieI _{NCOM}	Investment of commodity i in domestic capital stock
Κ		Capital stock located in the U.S.
KD		Quantity of total capital input normalized such that its rental price is one
KD_{i}	$j \varepsilon I_{NBUY}$	Quantity of capital input into sector j
	jeI _{NBUY}	Quantity of labor input into sector j
LEIS		Leisure time
LH		Time endowment of economy
LS		Labor supply
М		Vector of competitive imports.
M_{i}	ieI _{COM}	Imports of (competitive) commodities
N^{eq}		Number of household equivalent members in economy
N^m	$m \varepsilon I_{CNODE}$	Consumption of NIPA aggregate m
N_i	$i \varepsilon I_{PCE}$	Consumption of NIPA commodities
NCI_j	$j \varepsilon I_{NBUY}$	Non-competitive imports into sector j
QC_i	ieI _{COM}	Total domestic output of commodity i
QI_j	$j \varepsilon I_{IND}$	Output of industry j
QP^{jm}	$j \varepsilon I_{IND}$ $m \varepsilon I_{PNODE}$	Aggregate input m into industry j
QP_i^j	iεI _{COM} jεI _{IND}	Input of commodity i into industry j
QS_i	ieI _{COM}	Total supply of commodity i
X		Vector of exports.
X_i	ieI _{COM}	Exports of commodity i
X_i^{tr}	$i \varepsilon I_{COM}$	Travel exports of commodity i

A.8.3 Prices:

e		"exchange rate"
i *		interest rate on private US owned foreign assets
r		After tax interest rate used in Euler eqn.
r _{jc}	jeI _{IND}	average (over equity, debt) rate of return to corporate capital
r _{jn}	jeI _{IND}	average rate of return to noncorporate capital
r_h		average rate of return to household capital
i		Interest rate on debt
W		Price of total hours (work and leisure)
\bar{w}		After tax average wage rate
w^{LE}		Price of leisure
$P_i *$	ieI _{COM}	World price for US exports.
P^{Hm}	$m \varepsilon I_{CNODE}$	Vector of prices at node m of consumption function
P^{im}	$m \varepsilon I_{INV}$	Vector of prices at node m of investment function
P^{Pjm}	$j \epsilon I_{IND} m \epsilon I_{PNODE}$	Vector of prices at node m of industry j's production function
PC_i	ieI _{COM}	Price of domestically produced commodities
PF		Price of full consumption
PI_j	jeI _{IND}	Price of industry output paid by buyers

PII		Price of aggregate investment goods
PII^{m}	$m \epsilon I_{INV}$	Price of investment aggregate m.
PII_{mi}	$mi \varepsilon I_{INVm}$	Union of above aggregate investment prices
		and supply prices.
PK		Price of capital stock
PKD_j	$j \varepsilon I_{BUY}$	Rental price of capital paid by producer
PLD_j	$j \varepsilon I_{BUY}$	Price of labor paid by employers
PM_i	ieI _{COM}	Price of non-competitive imports paid by importers
PN_n	neI _{NIPA}	Price of NIPA PCE commodity
PN^m	$m \epsilon I_{CNODE}$	Price of consumption aggregate m
PN_{mi}	$mi \varepsilon I_{CNODEm}$	Union of above 2 sets of consumption prices
$PNCI_i$	$j \varepsilon I_{BUY}$	Price of imports paid by importers
PO_j		Price of industry output received by producer
PP^{jm}	$j \varepsilon I_{IND} m \varepsilon I_{PNODE}$	Price of aggregate input m into industry j
PP_{mi}^{j}	mi $arepsilon I_{PNODEm}$	Union of above set of aggregate production prices and prices of inputs.
PS		Vector of supply prices.
PS_i	ieI _{COM}	Price of commodities to buyers
PS_i^C	iɛI _{COM} iɛI _{COM}	Prices of commodities paid by the household sector

A.8.4 Parameters of behaviorial equations:

ρ		Pure rate of time preference
σ		Household intertemporal elasticity of substitution
α^F		Shares (at unit prices) of commodities and leisure in full consumption
B^F		Share elasticity of components of full consumption (w.r.t. prices)
α_0^F		Shares (at $t = -\infty$) of commodities and leisure in F
$\hat{\beta_0^F}$		Trend coefficient of commodities and leisure in F
$egin{array}{c} eta_0^F \ \mu^F \end{array}$		Slope of logistic curve in F
$ au^F$		Mid-point of logistic curve
$lpha^{Hm}$	$m \varepsilon I_{CNODE}$	Shares (at unit prices) of consumption at node m
B^{Hm}		Share elasticity of consumption (w.r.t. prices) at node m
B_{pA}		Coefficients on demographic characteristics of CC function
ξ^d		Distribution coefficient of CC function
ξ^L		Vector of demographic dummies
$lpha_0^j$	jeI _{IND}	Cost function constant
	jεI _{IND} mεI _{PNODE}	Shares (at unit prices) of of inputs into industry j at node m
B^{Pjm}		Share elasticity of input demands (w.r.t. prices) at node m
B_{pt}^{j}	jeI _{IND}	Biases of technical change
μ^{j}		Slope of logistic curve representing index of technology

Mid-point of logistic curv

 au^j

A^j_{KD0}	jeI _{IND}	Constant of industry capital input price function
A_{KD}^j	jeI _{IND}	Shares (at unit prices) of inputs of industry capital input
B_{KD}^{j}	jeI _{IND}	Share elasticity of components of industry capital input
	jeI _{IND}	Shares (at p=1) of components of indus corporate cap input
	jeI _{IND}	Share elasticity of components of indus corporate cap input
α_{KD}^{jn}	jeI _{IND}	Shares (at p=1) of components of indus noncorp cap input
	jeI _{IND}	Share elasticity of components of indus noncorporate cap input
α_{KD}^{h}	5 1115	Shares (at p=1) of components of household capital input
B_{KD}^h		Share elasticity of components of household capital input
α^{IY}		Share of inventory investment in total investment
α_i^{IY}	ieI _{COM}	Share of inventory investment going to commodity i
$lpha^{ m Im}$	$m \epsilon I_{INV}$	Shares (at unit prices) of commodities at investment node m
B^{Im}	$m \varepsilon I_{INV}$	Shares elasticity of components of totalinvestment at node m
α^{I}		Constant term in logistic curve of aggregation
		constant converting investment into capital, ψ^{I}
β^{I}		Trend coefficient of logistic curve, ψ^I
μ^{I}		Slope of logistic curve, ψ^{I}
$ au^{I}$		Mid-point of logistic curve, ψ^I
α^{PK}		Constant terms in locistic sums of a surroughting
α		Constant term in logistic curve of aggregation constant converting price of investment into
		price of capital, ψ^{PK}
β^{PK}		Trend coefficient of logistic curve, ψ^{PK}
μ^{PK}		Slope of logistic curve, ψ^{PK}
$ au^{PK}$		Mid-point of logistic curve, ψ^{PK}
·		
α^{Mi}	ieI _{COM}	Shares (at unit prices) of domestic commodities and
	com	imports in total supply
$lpha_0^{Mi}$		Shares (at $t=-\infty$) of domestic commodities and imports
β_0^{Mi}		Trend coefficient of domestic commodities and imports
μ^{Mi}		Slope of logistic curve representing import penetration
$ au^{Mi}$		Mid-point of logistic curve
B^{Mi}	ieI _{COM}	Shares elasticity of components of total supply
η^i	ieI _{COM}	Export price elasticities
C		
$lpha_i^G$	$i \varepsilon I_{INP}$	Share of government expenditures on i
c	1	
δ_{cs}	c=c,n,h	Rate of depreciation of short-lived capital stock
δ_{ch}	c=c,n,h	Rate of depreciation of long-lived capital stock
${m eta}_{jc}$		corporate debt-equity ratio, industry j

-226-

$egin{split} eta_{jn}\ eta_h\ lpha^{DIV} \end{split}$		noncorporate debt-equity ratio, industry j debt-equity ratio, household dividend-payout ratio
$egin{aligned} \psi^K \ \psi^K_j \ \psi^L_j \ \psi^L_C \end{aligned}$	jεΙ _{BUY} jεΙ _{BUY}	Aggregation constant of capital services Aggregation constants of capital Aggregation constants of labor Aggregation constants of leisure
$\lambda_i \ \lambda^I$	ieI _{IND}	Shocks to production function Shocks to investment function
	iεI _{IND} xεI _{EXT} iεI _{COM} xεI _{EXT}	Production externalities Import externalities
Н		Bridge matrix linking NIPA "Personal Cons. Expenditures" commodities to IO commodities
Μ		IO Make matrix; the contribution of each industry each commodity

A.8.5 Tax rates:

t_c		Tax rate on corporate capital income (federal + S&L)
t_c^f	f = f, s	Statutory tax rate on corp. capital income; federal, S&L
ITC_{cs}	$c = c, n \ s = s, l$	Investment tax credit (corp,noncorp; short,long)
Z_{cs}	$c = c, n \ s = s, l$	Depreciation allowances for \$1 of investment
t_c^p		Property tax rate; corporate
t_n^p		Property tax rate; noncorporate
t_h^p		Property tax rate; household capital
t_c^g	c = c, n, h	capital gains tax (corp, noncorp, household)
t_c^e	c = c, n, h	tax on equity income (corp, noncorp, household)
t_c^{earn}		average tax on personal corporate capital income
γ_c^p	c=c,n,h	deduction of property taxes (=1 in version 9)
γ_c^i	c=c,n,h	proportion of interest payments deducted before tax
γ_c^d		proportion of dividends deducted before tax on corp.
γ_c^g	c=c,n	proportion of capital gains on corp equities excluded from
		individual income for tax purposes.
dhi		proportion of inflation premium in interest determined by indexing
		rule of household interest expense
t_h		tax rate on household income used to adjust deductions
tc_i	ieI _{COM}	Total tax rate on consumption commodity
tc		Consumption tax rate
tc^{g}		Consumption tax on goods only

to

tc^N		Consumption tax on imports only (NCI)
tc^{K}		Consumption tax on household capital input
tc^L		Consumption tax on private household labor.
tl^a		Average tax rate on labor income
tl^{af}	f = f, s	Average tax rate on labor income; federal, state
tl^m		Marginal tax rate on labor income
tl^{mf}	f = f, s	Marginal tax rate on labor income; federal, state
tl^0		Implied tax rate on labor income at zero income
tr _i	ieI _{COM}	Tariff rate on competitive imports
tr_i^n	$i \varepsilon I_{BUY}$	Tariff rate on non-comp imports
$tr_i *$	ieI _{COM}	World tariff rate on US exports
tt j	jeI _{IND}	Indirect business tax (sales tax)
	f = f, s	Indirect business tax; federal, state&local
tt_{j}^{full}	jeI _{IND}	The full tax rate on sales.
tu_i	$I \varepsilon I_{IND}$	Unit tax on quantities sold
tx_i^u	ieI _{IND}	Total Unit externalities tax on quantities sold
tx_i^v	ieI _{IND}	Total Externalities tax on sales
tx_i^{ru}	$i \varepsilon I_{COM}$	Total Unit externalities tax on quantities imported
tx_i^{rv}		Total Externalities tax on imports
tx_j^{Xu}	$j \varepsilon I_{EXT}$	Tax on one unit of externality j
tx_j^{Xv}	$j \varepsilon I_{EXT}$	Tax on one dollar of externality j
θ		Rate of investment tax credit (post sample)
tw^f	f = f, s	Wealth tax rate (estate taxes)